Proof of Theorem bj-ceqsalt1
Step | Hyp | Ref
| Expression |
1 | | bj-ceqsalt1.1 |
. . . 4
⊢ (𝜃 → ∃𝑥𝜒) |
2 | 1 | 3ad2ant3 1132 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → ∃𝑥𝜒) |
3 | | biimp 218 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
4 | 3 | imim3i 64 |
. . . . . 6
⊢ ((𝜒 → (𝜑 ↔ 𝜓)) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) |
5 | 4 | al2imi 1817 |
. . . . 5
⊢
(∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝜒 → 𝜑) → ∀𝑥(𝜒 → 𝜓))) |
6 | 5 | 3ad2ant2 1131 |
. . . 4
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → (∀𝑥(𝜒 → 𝜑) → ∀𝑥(𝜒 → 𝜓))) |
7 | | 19.23t 2208 |
. . . . 5
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝜒 → 𝜓) ↔ (∃𝑥𝜒 → 𝜓))) |
8 | 7 | 3ad2ant1 1130 |
. . . 4
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → (∀𝑥(𝜒 → 𝜓) ↔ (∃𝑥𝜒 → 𝜓))) |
9 | 6, 8 | sylibd 242 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → (∀𝑥(𝜒 → 𝜑) → (∃𝑥𝜒 → 𝜓))) |
10 | 2, 9 | mpid 44 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → (∀𝑥(𝜒 → 𝜑) → 𝜓)) |
11 | | biimpr 223 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) |
12 | 11 | imim2i 16 |
. . . . . 6
⊢ ((𝜒 → (𝜑 ↔ 𝜓)) → (𝜒 → (𝜓 → 𝜑))) |
13 | 12 | com23 86 |
. . . . 5
⊢ ((𝜒 → (𝜑 ↔ 𝜓)) → (𝜓 → (𝜒 → 𝜑))) |
14 | 13 | alimi 1813 |
. . . 4
⊢
(∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝜓 → (𝜒 → 𝜑))) |
15 | 14 | 3ad2ant2 1131 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → ∀𝑥(𝜓 → (𝜒 → 𝜑))) |
16 | | 19.21t 2204 |
. . . 4
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝜒 → 𝜑)) ↔ (𝜓 → ∀𝑥(𝜒 → 𝜑)))) |
17 | 16 | 3ad2ant1 1130 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → (∀𝑥(𝜓 → (𝜒 → 𝜑)) ↔ (𝜓 → ∀𝑥(𝜒 → 𝜑)))) |
18 | 15, 17 | mpbid 235 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → (𝜓 → ∀𝑥(𝜒 → 𝜑))) |
19 | 10, 18 | impbid 215 |
1
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑 ↔ 𝜓)) ∧ 𝜃) → (∀𝑥(𝜒 → 𝜑) ↔ 𝜓)) |