MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciegft Structured version   Visualization version   GIF version

Theorem sbciegft 3732
Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3733.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbciegft ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbciegft
StepHypRef Expression
1 sbc5 3722 . . 3 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
2 biimp 218 . . . . . . . 8 ((𝜑𝜓) → (𝜑𝜓))
32imim2i 16 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜑𝜓)))
43impd 414 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → ((𝑥 = 𝐴𝜑) → 𝜓))
54alimi 1819 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥((𝑥 = 𝐴𝜑) → 𝜓))
6 19.23t 2208 . . . . . 6 (Ⅎ𝑥𝜓 → (∀𝑥((𝑥 = 𝐴𝜑) → 𝜓) ↔ (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓)))
76biimpa 480 . . . . 5 ((Ⅎ𝑥𝜓 ∧ ∀𝑥((𝑥 = 𝐴𝜑) → 𝜓)) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
85, 7sylan2 596 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
983adant1 1132 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓))
101, 9syl5bi 245 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
11 biimpr 223 . . . . . . . 8 ((𝜑𝜓) → (𝜓𝜑))
1211imim2i 16 . . . . . . 7 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
1312com23 86 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → (𝑥 = 𝐴𝜑)))
1413alimi 1819 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
15 19.21t 2204 . . . . . 6 (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
1615biimpa 480 . . . . 5 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
1714, 16sylan2 596 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
18173adant1 1132 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
19 sbc6g 3724 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
20193ad2ant1 1135 . . 3 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
2118, 20sylibrd 262 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓[𝐴 / 𝑥]𝜑))
2210, 21impbid 215 1 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wal 1541   = wceq 1543  wex 1787  wnf 1791  wcel 2110  [wsbc 3694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-sbc 3695
This theorem is referenced by:  sbciegf  3733  sbciedf  3738
  Copyright terms: Public domain W3C validator