MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciegft Structured version   Visualization version   GIF version

Theorem sbciegft 3842
Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3844.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) (Proof shortened by SN, 14-May-2025.)
Assertion
Ref Expression
sbciegft ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbciegft
StepHypRef Expression
1 sbc6g 3834 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
213ad2ant1 1133 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
3 ceqsalt 3523 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
433comr 1125 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
52, 4bitrd 279 1 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087  wal 1535   = wceq 1537  wnf 1781  wcel 2108  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by:  sbciegf  3844  sbciedf  3849
  Copyright terms: Public domain W3C validator