Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.41rg Structured version   Visualization version   GIF version

Theorem 19.41rg 39360
Description: Closed form of right-to-left implication of 19.41 2268, Theorem 19.41 of [Margaris] p. 90. Derived from 19.41rgVD 39722. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
19.41rg (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))

Proof of Theorem 19.41rg
StepHypRef Expression
1 sp 2215 . . . 4 (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → ∀𝑥𝜓))
2 pm3.21 463 . . . . . . 7 (𝜓 → (𝜑 → (𝜑𝜓)))
32a1i 11 . . . . . 6 ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
43al2imi 1910 . . . . 5 (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓))))
5 exim 1928 . . . . 5 (∀𝑥(𝜑 → (𝜑𝜓)) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
64, 5syl6 35 . . . 4 (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))))
71, 6syld 47 . . 3 (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))))
87com23 86 . 2 (∀𝑥(𝜓 → ∀𝑥𝜓) → (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓))))
98impd 398 1 (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1650  wex 1874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-12 2211
This theorem depends on definitions:  df-bi 198  df-an 385  df-ex 1875
This theorem is referenced by:  ax6e2nd  39368  ax6e2ndVD  39728  ax6e2ndALT  39750
  Copyright terms: Public domain W3C validator