![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.41rg | Structured version Visualization version GIF version |
Description: Closed form of right-to-left implication of 19.41 2204, Theorem 19.41 of [Margaris] p. 90. Derived from 19.41rgVD 40796. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
19.41rg | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2148 | . . . 4 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → ∀𝑥𝜓)) | |
2 | pm3.21 472 | . . . . . . 7 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑 ∧ 𝜓)))) |
4 | 3 | al2imi 1801 | . . . . 5 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑 ∧ 𝜓)))) |
5 | exim 1819 | . . . . 5 ⊢ (∀𝑥(𝜑 → (𝜑 ∧ 𝜓)) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | |
6 | 4, 5 | syl6 35 | . . . 4 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)))) |
7 | 1, 6 | syld 47 | . . 3 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)))) |
8 | 7 | com23 86 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑 ∧ 𝜓)))) |
9 | 8 | impd 411 | 1 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1523 ∃wex 1765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-12 2143 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 |
This theorem is referenced by: ax6e2nd 40452 ax6e2ndVD 40802 ax6e2ndALT 40824 |
Copyright terms: Public domain | W3C validator |