Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopab4 | Structured version Visualization version GIF version |
Description: Ordered pair membership in a class abstraction of ordered pairs. Compare to elopab 5440. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opelopab4 | ⊢ (〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5440 | . 2 ⊢ (〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
2 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3436 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opth 5391 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝑢, 𝑣〉 ↔ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
5 | eqcom 2745 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝑢, 𝑣〉 ↔ 〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉) | |
6 | 4, 5 | bitr3i 276 | . . . 4 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ 〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉) |
7 | 6 | anbi1i 624 | . . 3 ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ (〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
8 | 7 | 2exbii 1851 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
9 | 1, 8 | bitr4i 277 | 1 ⊢ (〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 〈cop 4567 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |