| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopab4 | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in a class abstraction of ordered pairs. Compare to elopab 5470. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| opelopab4 | ⊢ (〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 5470 | . 2 ⊢ (〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opth 5419 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝑢, 𝑣〉 ↔ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
| 5 | eqcom 2738 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝑢, 𝑣〉 ↔ 〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉) | |
| 6 | 4, 5 | bitr3i 277 | . . . 4 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ 〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉) |
| 7 | 6 | anbi1i 624 | . . 3 ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ (〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| 8 | 7 | 2exbii 1850 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝑢, 𝑣〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| 9 | 1, 8 | bitr4i 278 | 1 ⊢ (〈𝑢, 𝑣〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4581 {copab 5155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-opab 5156 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |