Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelopab4 Structured version   Visualization version   GIF version

Theorem opelopab4 42060
Description: Ordered pair membership in a class abstraction of ordered pairs. Compare to elopab 5433. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
opelopab4 (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem opelopab4
StepHypRef Expression
1 elopab 5433 . 2 (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 vex 3426 . . . . . 6 𝑥 ∈ V
3 vex 3426 . . . . . 6 𝑦 ∈ V
42, 3opth 5385 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑥 = 𝑢𝑦 = 𝑣))
5 eqcom 2745 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ ⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
64, 5bitr3i 276 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) ↔ ⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
76anbi1i 623 . . 3 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
872exbii 1852 . 2 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
91, 8bitr4i 277 1 (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  cop 4564  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator