![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opelopab4 | Structured version Visualization version GIF version |
Description: Ordered pair membership in a class abstraction of ordered pairs. Compare to elopab 5488. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opelopab4 | ⊢ (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5488 | . 2 ⊢ (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
2 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opth 5437 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
5 | eqcom 2740 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ ⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩) | |
6 | 4, 5 | bitr3i 277 | . . . 4 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩) |
7 | 6 | anbi1i 625 | . . 3 ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ (⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
8 | 7 | 2exbii 1852 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥∃𝑦(⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
9 | 1, 8 | bitr4i 278 | 1 ⊢ (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ⟨cop 4596 {copab 5171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-opab 5172 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |