Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelopab4 Structured version   Visualization version   GIF version

Theorem opelopab4 43962
Description: Ordered pair membership in a class abstraction of ordered pairs. Compare to elopab 5523. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
opelopab4 (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem opelopab4
StepHypRef Expression
1 elopab 5523 . 2 (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 vex 3473 . . . . . 6 𝑥 ∈ V
3 vex 3473 . . . . . 6 𝑦 ∈ V
42, 3opth 5472 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑥 = 𝑢𝑦 = 𝑣))
5 eqcom 2734 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ ↔ ⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
64, 5bitr3i 277 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) ↔ ⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
76anbi1i 623 . . 3 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
872exbii 1844 . 2 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝑢, 𝑣⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
91, 8bitr4i 278 1 (⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  cop 4630  {copab 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-opab 5205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator