MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 28765
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 28764 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3074"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 21755: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2664 and stirling 43630.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1841, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3140.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15593. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴𝐵) is defined in df-dif 3890, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴𝐵 has syntax label fragment "ss" because it is defined in df-ss 3904. Most theorem names follow from these fragments, for example, the theorem proving (𝐴𝐵) ⊆ 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4066. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4562), and the pair construct {𝐴, 𝐵} has fragment "pr" ( from df-pr 4564). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴𝐵 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐵 ∖ {𝐶}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4720. An "n" is often used for negation (¬), e.g., nan 827.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers (even though its definition is in df-c 10877) and "re" represents real numbers (Definition df-r 10881). The empty set often uses fragment 0, even though it is defined in df-nul 4257. The syntax construct (𝐴 + 𝐵) usually uses the fragment "add" (which is consistent with df-add 10882), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐵) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12108.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 15859 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 15780) we have value cosval 15832 and closure coscl 15836.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 28767 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1942 versus 19.21 2200. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as 𝑥𝜑 in 19.21 2200). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1917. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1935. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2576 derived from eu6 2574. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (, "iff" , "if and only if"), e.g., sspwb 5365. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2409 (cbval 2398 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3493. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 584), commutes (e.g., biimpac 479)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as 𝑥𝜑
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 477, rexlimiva 3210
ablAbelian group df-abl 19389 Abel Yes ablgrp 19391, zringabl 20674
absabsorption No ressabs 16959
absabsolute value (of a complex number) df-abs 14947 (abs‘𝐴) Yes absval 14949, absneg 14989, abs1 15009
adadding No adantr 481, ad2antlr 724
addadd (see "p") df-add 10882 (𝐴 + 𝐵) Yes addcl 10953, addcom 11161, addass 10958
al"for all" 𝑥𝜑 No alim 1813, alex 1828
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 397 (𝜑𝜓) Yes anor 980, iman 402, imnan 400
antantecedent No adantr 481
assassociative No biass 386, orass 919, mulass 10959
asymasymmetric, antisymmetric No intasym 6020, asymref 6021, posasymb 18037
axaxiom No ax6dgen 2124, ax1cn 10905
bas, base base (set of an extensible structure) df-base 16913 (Base‘𝑆) Yes baseval 16914, ressbas 16947, cnfldbas 20601
b, bibiconditional ("iff", "if and only if") df-bi 206 (𝜑𝜓) Yes impbid 211, sspwb 5365
brbinary relation df-br 5075 𝐴𝑅𝐵 Yes brab1 5122, brun 5125
cbvchange bound variable No cbvalivw 2010, cbvrex 3380
clclosure No ifclda 4494, ovrcl 7316, zaddcl 12360
cncomplex numbers df-c 10877 Yes nnsscn 11978, nncn 11981
cnfldfield of complex numbers df-cnfld 20598 fld Yes cnfldbas 20601, cnfldinv 20629
cntzcentralizer df-cntz 18923 (Cntz‘𝑀) Yes cntzfval 18926, dprdfcntz 19618
cnvconverse df-cnv 5597 𝐴 Yes opelcnvg 5789, f1ocnv 6728
cocomposition df-co 5598 (𝐴𝐵) Yes cnvco 5794, fmptco 7001
comcommutative No orcom 867, bicomi 223, eqcomi 2747
concontradiction, contraposition No condan 815, con2d 134
csbclass substitution df-csb 3833 𝐴 / 𝑥𝐵 Yes csbid 3845, csbie2g 3875
cygcyclic group df-cyg 19478 CycGrp Yes iscyg 19479, zringcyg 20691
ddeduction form (suffix) No idd 24, impbid 211
df(alternate) definition (prefix) No dfrel2 6092, dffn2 6602
di, distrdistributive No andi 1005, imdi 391, ordi 1003, difindi 4215, ndmovdistr 7461
difclass difference df-dif 3890 (𝐴𝐵) Yes difss 4066, difindi 4215
divdivision df-div 11633 (𝐴 / 𝐵) Yes divcl 11639, divval 11635, divmul 11636
dmdomain df-dm 5599 dom 𝐴 Yes dmmpt 6143, iswrddm0 14241
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2730 𝐴 = 𝐵 Yes 2p2e4 12108, uneqri 4085, equtr 2024
edgedge df-edg 27418 (Edg‘𝐺) Yes edgopval 27421, usgredgppr 27563
elelement of 𝐴𝐵 Yes eldif 3897, eldifsn 4720, elssuni 4871
enequinumerous df-en 𝐴𝐵 Yes domen 8751, enfi 8973
eu"there exists exactly one" eu6 2574 ∃!𝑥𝜑 Yes euex 2577, euabsn 4662
exexists (i.e. is a set) ∈ V No brrelex1 5640, 0ex 5231
ex, e"there exists (at least one)" df-ex 1783 𝑥𝜑 Yes exim 1836, alex 1828
expexport No expt 177, expcom 414
f"not free in" (suffix) No equs45f 2459, sbf 2263
ffunction df-f 6437 𝐹:𝐴𝐵 Yes fssxp 6628, opelf 6635
falfalse df-fal 1552 Yes bifal 1555, falantru 1574
fifinite intersection df-fi 9170 (fi‘𝐵) Yes fival 9171, inelfi 9177
fi, finfinite df-fin 8737 Fin Yes isfi 8764, snfi 8834, onfin 9013
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 36150) df-field 19994 Field Yes isfld 20000, fldidom 20576
fnfunction with domain df-fn 6436 𝐴 Fn 𝐵 Yes ffn 6600, fndm 6536
frgpfree group df-frgp 19316 (freeGrp‘𝐼) Yes frgpval 19364, frgpadd 19369
fsuppfinitely supported function df-fsupp 9129 𝑅 finSupp 𝑍 Yes isfsupp 9132, fdmfisuppfi 9137, fsuppco 9161
funfunction df-fun 6435 Fun 𝐹 Yes funrel 6451, ffun 6603
fvfunction value df-fv 6441 (𝐹𝐴) Yes fvres 6793, swrdfv 14361
fzfinite set of sequential integers df-fz 13240 (𝑀...𝑁) Yes fzval 13241, eluzfz 13251
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13354, fz0tp 13357
fzohalf-open integer range df-fzo 13383 (𝑀..^𝑁) Yes elfzo 13389, elfzofz 13403
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7593
grgraph No uhgrf 27432, isumgr 27465, usgrres1 27682
grpgroup df-grp 18580 Grp Yes isgrp 18583, tgpgrp 23229
gsumgroup sum df-gsum 17153 (𝐺 Σg 𝐹) Yes gsumval 18361, gsumwrev 18973
hashsize (of a set) df-hash 14045 (♯‘𝐴) Yes hashgval 14047, hashfz1 14060, hashcl 14071
hbhypothesis builder (prefix) No hbxfrbi 1827, hbald 2168, hbequid 36923
hm(monoid, group, ring) homomorphism No ismhm 18432, isghm 18834, isrhm 19965
iinference (suffix) No eleq1i 2829, tcsni 9501
iimplication (suffix) No brwdomi 9327, infeq5i 9394
ididentity No biid 260
iedgindexed edge df-iedg 27369 (iEdg‘𝐺) Yes iedgval0 27410, edgiedgb 27424
idmidempotent No anidm 565, tpidm13 4692
im, impimplication (label often omitted) df-im 14812 (𝐴𝐵) Yes iman 402, imnan 400, impbidd 209
imaimage df-ima 5602 (𝐴𝐵) Yes resima 5925, imaundi 6053
impimport No biimpa 477, impcom 408
inintersection df-in 3894 (𝐴𝐵) Yes elin 3903, incom 4135
infinfimum df-inf 9202 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9260, infiso 9267
is...is (something a) ...? No isring 19787
jjoining, disjoining No jc 161, jaoi 854
lleft No olcd 871, simpl 483
mapmapping operation or set exponentiation df-map 8617 (𝐴m 𝐵) Yes mapvalg 8625, elmapex 8636
matmatrix df-mat 21555 (𝑁 Mat 𝑅) Yes matval 21558, matring 21592
mdetdeterminant (of a square matrix) df-mdet 21734 (𝑁 maDet 𝑅) Yes mdetleib 21736, mdetrlin 21751
mgmmagma df-mgm 18326 Magma Yes mgmidmo 18344, mgmlrid 18351, ismgm 18327
mgpmultiplicative group df-mgp 19721 (mulGrp‘𝑅) Yes mgpress 19735, ringmgp 19789
mndmonoid df-mnd 18386 Mnd Yes mndass 18394, mndodcong 19150
mo"there exists at most one" df-mo 2540 ∃*𝑥𝜑 Yes eumo 2578, moim 2544
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7280 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7388, resmpo 7394
mptmodus ponendo tollens No mptnan 1771, mptxor 1772
mptmaps-to notation for a function df-mpt 5158 (𝑥𝐴𝐵) Yes fconstmpt 5649, resmpt 5945
mpt2maps-to notation for an operation (deprecated). We are in the process of replacing mpt2 with mpo in labels. df-mpo 7280 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7388, resmpo 7394
mulmultiplication (see "t") df-mul 10883 (𝐴 · 𝐵) Yes mulcl 10955, divmul 11636, mulcom 10957, mulass 10959
n, notnot ¬ 𝜑 Yes nan 827, notnotr 130
nenot equaldf-ne 𝐴𝐵 Yes exmidne 2953, neeqtrd 3013
nelnot element ofdf-nel 𝐴𝐵 Yes neli 3051, nnel 3058
ne0not equal to zero (see n0) ≠ 0 No negne0d 11330, ine0 11410, gt0ne0 11440
nf "not free in" (prefix) No nfnd 1861
ngpnormed group df-ngp 23739 NrmGrp Yes isngp 23752, ngptps 23758
nmnorm (on a group or ring) df-nm 23738 (norm‘𝑊) Yes nmval 23745, subgnm 23789
nnpositive integers df-nn 11974 Yes nnsscn 11978, nncn 11981
nn0nonnegative integers df-n0 12234 0 Yes nnnn0 12240, nn0cn 12243
n0not the empty set (see ne0) ≠ ∅ No n0i 4267, vn0 4272, ssn0 4334
OLDold, obsolete (to be removed soon) No 19.43OLD 1886
onordinal number df-on 6270 𝐴 ∈ On Yes elon 6275, 1on 8309 onelon 6291
opordered pair df-op 4568 𝐴, 𝐵 Yes dfopif 4800, opth 5391
oror df-or 845 (𝜑𝜓) Yes orcom 867, anor 980
otordered triple df-ot 4570 𝐴, 𝐵, 𝐶 Yes euotd 5427, fnotovb 7325
ovoperation value df-ov 7278 (𝐴𝐹𝐵) Yes fnotovb 7325, fnovrn 7447
pplus (see "add"), for all-constant theorems df-add 10882 (3 + 2) = 5 Yes 3p2e5 12124
pfxprefix df-pfx 14384 (𝑊 prefix 𝐿) Yes pfxlen 14396, ccatpfx 14414
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8618 (𝐴pm 𝐵) Yes elpmi 8634, pmsspw 8665
prpair df-pr 4564 {𝐴, 𝐵} Yes elpr 4584, prcom 4668, prid1g 4696, prnz 4713
prm, primeprime (number) df-prm 16377 Yes 1nprm 16384, dvdsprime 16392
pssproper subset df-pss 3906 𝐴𝐵 Yes pssss 4030, sspsstri 4037
q rational numbers ("quotients") df-q 12689 Yes elq 12690
rright No orcd 870, simprl 768
rabrestricted class abstraction df-rab 3073 {𝑥𝐴𝜑} Yes rabswap 3423, df-oprab 7279
ralrestricted universal quantification df-ral 3069 𝑥𝐴𝜑 Yes ralnex 3167, ralrnmpo 7412
rclreverse closure No ndmfvrcl 6805, nnarcl 8447
rereal numbers df-r 10881 Yes recn 10961, 0re 10977
relrelation df-rel 5596 Rel 𝐴 Yes brrelex1 5640, relmpoopab 7934
resrestriction df-res 5601 (𝐴𝐵) Yes opelres 5897, f1ores 6730
reurestricted existential uniqueness df-reu 3072 ∃!𝑥𝐴𝜑 Yes nfreud 3302, reurex 3362
rexrestricted existential quantification df-rex 3070 𝑥𝐴𝜑 Yes rexnal 3169, rexrnmpo 7413
rmorestricted "at most one" df-rmo 3071 ∃*𝑥𝐴𝜑 Yes nfrmod 3303, nrexrmo 3366
rnrange df-rn 5600 ran 𝐴 Yes elrng 5800, rncnvcnv 5843
rng(unital) ring df-ring 19785 Ring Yes ringidval 19739, isring 19787, ringgrp 19788
rotrotation No 3anrot 1099, 3orrot 1091
seliminates need for syllogism (suffix) No ancoms 459
sb(proper) substitution (of a set) df-sb 2068 [𝑦 / 𝑥]𝜑 Yes spsbe 2085, sbimi 2077
sbc(proper) substitution of a class df-sbc 3717 [𝐴 / 𝑥]𝜑 Yes sbc2or 3725, sbcth 3731
scascalar df-sca 16978 (Scalar‘𝐻) Yes resssca 17053, mgpsca 19728
simpsimple, simplification No simpl 483, simp3r3 1282
snsingleton df-sn 4562 {𝐴} Yes eldifsn 4720
spspecialization No spsbe 2085, spei 2394
sssubset df-ss 3904 𝐴𝐵 Yes difss 4066
structstructure df-struct 16848 Struct Yes brstruct 16849, structfn 16857
subsubtract df-sub 11207 (𝐴𝐵) Yes subval 11212, subaddi 11308
supsupremum df-sup 9201 sup(𝐴, 𝐵, < ) Yes fisupcl 9228, supmo 9211
suppsupport (of a function) df-supp 7978 (𝐹 supp 𝑍) Yes ressuppfi 9154, mptsuppd 8003
swapswap (two parts within a theorem) No rabswap 3423, 2reuswap 3681
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4176, cnvsym 6019
symgsymmetric group df-symg 18975 (SymGrp‘𝐴) Yes symghash 18985, pgrpsubgsymg 19017
t times (see "mul"), for all-constant theorems df-mul 10883 (3 · 2) = 6 Yes 3t2e6 12139
th, t theorem No nfth 1804, sbcth 3731, weth 10251, ancomst 465
tptriple df-tp 4566 {𝐴, 𝐵, 𝐶} Yes eltpi 4623, tpeq1 4678
trtransitive No bitrd 278, biantr 803
tru, t true, truth df-tru 1542 Yes bitru 1548, truanfal 1573, biimt 361
ununion df-un 3892 (𝐴𝐵) Yes uneqri 4085, uncom 4087
unitunit (in a ring) df-unit 19884 (Unit‘𝑅) Yes isunit 19899, nzrunit 20538
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1538, vex 3436, velpw 4538, vtoclf 3497
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2390
vtx vertex df-vtx 27368 (Vtx‘𝐺) Yes vtxval0 27409, opvtxov 27375
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1946
wweak (version of a theorem) (suffix) No ax11w 2126, spnfw 1983
wrdword df-word 14218 Word 𝑆 Yes iswrdb 14223, wrdfn 14231, ffz0iswrd 14244
xpcross product (Cartesian product) df-xp 5595 (𝐴 × 𝐵) Yes elxp 5612, opelxpi 5626, xpundi 5655
xreXtended reals df-xr 11013 * Yes ressxr 11019, rexr 11021, 0xr 11022
z integers (from German "Zahlen") df-z 12320 Yes elz 12321, zcn 12324
zn ring of integers mod 𝑁 df-zn 20708 (ℤ/nℤ‘𝑁) Yes znval 20739, zncrng 20752, znhash 20766
zringring of integers df-zring 20671 ring Yes zringbas 20676, zringcrng 20672
0, z slashed zero (empty set) df-nul 4257 Yes n0i 4267, vn0 4272; snnz 4712, prnz 4713

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 𝜑
Assertion
Ref Expression
conventions-labels 𝜑

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator