MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 30383
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 30382 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3050"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 22522: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2660 and stirling 46211.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1840, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3228.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15790. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴𝐵) is defined in df-dif 3901, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴𝐵 has syntax label fragment "ss" because it is defined in df-ss 3915. Most theorem names follow from these fragments, for example, the theorem proving (𝐴𝐵) ⊆ 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4085. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4576), and the pair construct {𝐴, 𝐵} has fragment "pr" ( from df-pr 4578). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴𝐵 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐵 ∖ {𝐶}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4737. An "n" is often used for negation (¬), e.g., nan 829.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers (even though its definition is in df-c 11019) and "re" represents real numbers (Definition df-r 11023). The empty set often uses fragment 0, even though it is defined in df-nul 4283. The syntax construct (𝐴 + 𝐵) usually uses the fragment "add" (which is consistent with df-add 11024), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐵) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12262.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 16061 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 15979) we have value cosval 16034 and closure coscl 16038.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 30385 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1940 versus 19.21 2212. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as 𝑥𝜑 in 19.21 2212). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1915. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1933. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2573 derived from eu6 2571. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (, "iff" , "if and only if"), e.g., sspwb 5392. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2411 (cbval 2400 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3514. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 584), commutes (e.g., biimpac 478)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as 𝑥𝜑
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 476, rexlimiva 3126
ablAbelian group df-abl 19697 Abel Yes ablgrp 19699, zringabl 21390
absabsorption No ressabs 17161
absabsolute value (of a complex number) df-abs 15145 (abs‘𝐴) Yes absval 15147, absneg 15186, abs1 15206
adadding No adantr 480, ad2antlr 727
addadd (see "p") df-add 11024 (𝐴 + 𝐵) Yes addcl 11095, addcom 11306, addass 11100
al"for all" 𝑥𝜑 No alim 1811, alex 1827
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 396 (𝜑𝜓) Yes anor 984, iman 401, imnan 399
antantecedent No adantr 480
assassociative No biass 384, orass 921, mulass 11101
asymasymmetric, antisymmetric No intasym 6066, asymref 6067, posasymb 18227
axaxiom No ax6dgen 2133, ax1cn 11047
bas, base base (set of an extensible structure) df-base 17123 (Base‘𝑆) Yes baseval 17124, ressbas 17149, cnfldbas 21297
b, bibiconditional ("iff", "if and only if") df-bi 207 (𝜑𝜓) Yes impbid 212, sspwb 5392
brbinary relation df-br 5094 𝐴𝑅𝐵 Yes brab1 5141, brun 5144
ccommutes, commuted (suffix) No biimpac 478
ccontraction (suffix) No sylc 65, syl2anc 584
cbvchange bound variable No cbvalivw 2008, cbvrex 3330
cdmcodomain No ffvelcdm 7020, focdmex 7894
clclosure No ifclda 4510, ovrcl 7393, zaddcl 12518
cncomplex numbers df-c 11019 Yes nnsscn 12137, nncn 12140
cnfldfield of complex numbers df-cnfld 21294 fld Yes cnfldbas 21297, cnfldinv 21341
cntzcentralizer df-cntz 19231 (Cntz‘𝑀) Yes cntzfval 19234, dprdfcntz 19931
cnvconverse df-cnv 5627 𝐴 Yes opelcnvg 5824, f1ocnv 6780
cocomposition df-co 5628 (𝐴𝐵) Yes cnvco 5829, fmptco 7068
comcommutative No orcom 870, bicomi 224, eqcomi 2742
concontradiction, contraposition No condan 817, con2d 134
csbclass substitution df-csb 3847 𝐴 / 𝑥𝐵 Yes csbid 3859, csbie2g 3886
cygcyclic group df-cyg 19792 CycGrp Yes iscyg 19793, zringcyg 21408
ddeduction form (suffix) No idd 24, impbid 212
df(alternate) definition (prefix) No dfrel2 6141, dffn2 6658
di, distrdistributive No andi 1009, imdi 389, ordi 1007, difindi 4241, ndmovdistr 7541
difclass difference df-dif 3901 (𝐴𝐵) Yes difss 4085, difindi 4241
divdivision df-div 11782 (𝐴 / 𝐵) Yes divcl 11789, divval 11785, divmul 11786
dmdomain df-dm 5629 dom 𝐴 Yes dmmpt 6192, iswrddm0 14447
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2725 𝐴 = 𝐵 Yes 2p2e4 12262, uneqri 4105, equtr 2022
edgedge df-edg 29028 (Edg‘𝐺) Yes edgopval 29031, usgredgppr 29176
elelement of 𝐴𝐵 Yes eldif 3908, eldifsn 4737, elssuni 4889
enequinumerous df-en 𝐴𝐵 Yes domen 8890, enfi 9103
eu"there exists exactly one" eu6 2571 ∃!𝑥𝜑 Yes euex 2574, euabsn 4678
exexists (i.e. is a set) ∈ V No brrelex1 5672, 0ex 5247
ex, e"there exists (at least one)" df-ex 1781 𝑥𝜑 Yes exim 1835, alex 1827
expexport No expt 177, expcom 413
f"not free in" (suffix) No equs45f 2461, sbf 2275
ffunction df-f 6490 𝐹:𝐴𝐵 Yes fssxp 6683, opelf 6689
falfalse df-fal 1554 Yes bifal 1557, falantru 1576
fifinite intersection df-fi 9302 (fi‘𝐵) Yes fival 9303, inelfi 9309
fi, finfinite df-fin 8879 Fin Yes isfi 8904, snfi 8972, onfin 9131
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 38052) df-field 20649 Field Yes isfld 20657, fldidom 20688
fnfunction with domain df-fn 6489 𝐴 Fn 𝐵 Yes ffn 6656, fndm 6589
frgpfree group df-frgp 19624 (freeGrp‘𝐼) Yes frgpval 19672, frgpadd 19677
fsuppfinitely supported function df-fsupp 9253 𝑅 finSupp 𝑍 Yes isfsupp 9256, fdmfisuppfi 9265, fsuppco 9293
funfunction df-fun 6488 Fun 𝐹 Yes funrel 6503, ffun 6659
fvfunction value df-fv 6494 (𝐹𝐴) Yes fvres 6847, swrdfv 14558
fzfinite set of sequential integers df-fz 13410 (𝑀...𝑁) Yes fzval 13411, eluzfz 13421
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13527, fz0tp 13530
fzohalf-open integer range df-fzo 13557 (𝑀..^𝑁) Yes elfzo 13563, elfzofz 13577
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7679
grgraph No uhgrf 29042, isumgr 29075, usgrres1 29295
grpgroup df-grp 18851 Grp Yes isgrp 18854, tgpgrp 23994
gsumgroup sum df-gsum 17348 (𝐺 Σg 𝐹) Yes gsumval 18587, gsumwrev 19280
hashsize (of a set) df-hash 14240 (♯‘𝐴) Yes hashgval 14242, hashfz1 14255, hashcl 14265
hbhypothesis builder (prefix) No hbxfrbi 1826, hbald 2173, hbequid 39028
hm(monoid, group, ring, ...) homomorphism No ismhm 18695, isghm 19129, isrhm 20398
iinference (suffix) No eleq1i 2824, tcsni 9638
iimplication (suffix) No brwdomi 9461, infeq5i 9533
ididentity No biid 261
iedgindexed edge df-iedg 28979 (iEdg‘𝐺) Yes iedgval0 29020, edgiedgb 29034
idmidempotent No anidm 564, tpidm13 4708
im, impimplication (label often omitted) df-im 15010 (𝐴𝐵) Yes iman 401, imnan 399, impbidd 210
im(group, ring, ...) isomorphism No isgim 19176, rimrcl 20401
imaimage df-ima 5632 (𝐴𝐵) Yes resima 5968, imaundi 6101
impimport No biimpa 476, impcom 407
inintersection df-in 3905 (𝐴𝐵) Yes elin 3914, incom 4158
infinfimum df-inf 9334 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9394, infiso 9401
is...is (something a) ...? No isring 20157
jjoining, disjoining No jc 161, jaoi 857
lleft No olcd 874, simpl 482
mapmapping operation or set exponentiation df-map 8758 (𝐴m 𝐵) Yes mapvalg 8766, elmapex 8778
matmatrix df-mat 22324 (𝑁 Mat 𝑅) Yes matval 22327, matring 22359
mdetdeterminant (of a square matrix) df-mdet 22501 (𝑁 maDet 𝑅) Yes mdetleib 22503, mdetrlin 22518
mgmmagma df-mgm 18550 Magma Yes mgmidmo 18570, mgmlrid 18577, ismgm 18551
mgpmultiplicative group df-mgp 20061 (mulGrp‘𝑅) Yes mgpress 20070, ringmgp 20159
mndmonoid df-mnd 18645 Mnd Yes mndass 18653, mndodcong 19456
mo"there exists at most one" df-mo 2537 ∃*𝑥𝜑 Yes eumo 2575, moim 2541
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7357 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7466, resmpo 7472
mptmodus ponendo tollens No mptnan 1769, mptxor 1770
mptmaps-to notation for a function df-mpt 5175 (𝑥𝐴𝐵) Yes fconstmpt 5681, resmpt 5990
mulmultiplication (see "t") df-mul 11025 (𝐴 · 𝐵) Yes mulcl 11097, divmul 11786, mulcom 11099, mulass 11101
n, notnot ¬ 𝜑 Yes nan 829, notnotr 130
nenot equaldf-ne 𝐴𝐵 Yes exmidne 2939, neeqtrd 2998
nelnot element ofdf-nel 𝐴𝐵 Yes neli 3035, nnel 3043
ne0not equal to zero (see n0) ≠ 0 No negne0d 11477, ine0 11559, gt0ne0 11589
nf "not free in" (prefix) df-nf 1785 𝑥𝜑 Yes nfnd 1859
ngpnormed group df-ngp 24499 NrmGrp Yes isngp 24512, ngptps 24518
nmnorm (on a group or ring) df-nm 24498 (norm‘𝑊) Yes nmval 24505, subgnm 24549
nnpositive integers df-nn 12133 Yes nnsscn 12137, nncn 12140
nn0nonnegative integers df-n0 12389 0 Yes nnnn0 12395, nn0cn 12398
n0not the empty set (see ne0) ≠ ∅ No n0i 4289, vn0 4294, ssn0 4353
OLDold, obsolete (to be removed soon) No 19.43OLD 1884
onordinal number df-on 6315 𝐴 ∈ On Yes elon 6320, 1on 8403 onelon 6336
opordered pair df-op 4582 𝐴, 𝐵 Yes dfopif 4821, opth 5419
oror df-or 848 (𝜑𝜓) Yes orcom 870, anor 984
otordered triple df-ot 4584 𝐴, 𝐵, 𝐶 Yes euotd 5456, fnotovb 7404
ovoperation value df-ov 7355 (𝐴𝐹𝐵) Yes fnotovb 7404, fnovrn 7527
pplus (see "add"), for all-constant theorems df-add 11024 (3 + 2) = 5 Yes 3p2e5 12278
pfxprefix df-pfx 14581 (𝑊 prefix 𝐿) Yes pfxlen 14593, ccatpfx 14610
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8759 (𝐴pm 𝐵) Yes elpmi 8776, pmsspw 8807
prpair df-pr 4578 {𝐴, 𝐵} Yes elpr 4600, prcom 4684, prid1g 4712, prnz 4729
prm, primeprime (number) df-prm 16585 Yes 1nprm 16592, dvdsprime 16600
pssproper subset df-pss 3918 𝐴𝐵 Yes pssss 4047, sspsstri 4054
q rational numbers ("quotients") df-q 12849 Yes elq 12850
rreversed (suffix) No pm4.71r 558, caovdir 7586
rright No orcd 873, simprl 770
rabrestricted class abstraction df-rab 3397 {𝑥𝐴𝜑} Yes rabswap 3405, df-oprab 7356
ralrestricted universal quantification df-ral 3049 𝑥𝐴𝜑 Yes ralnex 3059, ralrnmpo 7491
rclreverse closure No ndmfvrcl 6861, nnarcl 8537
rereal numbers df-r 11023 Yes recn 11103, 0re 11121
relrelation df-rel 5626 Rel 𝐴 Yes brrelex1 5672, relmpoopab 8030
resrestriction df-res 5631 (𝐴𝐵) Yes opelres 5938, f1ores 6782
reurestricted existential uniqueness df-reu 3348 ∃!𝑥𝐴𝜑 Yes nfreud 3393, reurex 3351
rexrestricted existential quantification df-rex 3058 𝑥𝐴𝜑 Yes rexnal 3085, rexrnmpo 7492
rmorestricted "at most one" df-rmo 3347 ∃*𝑥𝐴𝜑 Yes nfrmod 3392, nrexrmo 3366
rnrange df-rn 5630 ran 𝐴 Yes elrng 5835, rncnvcnv 5878
ring(unital) ring df-ring 20155 Ring Yes ringidval 20103, isring 20157, ringgrp 20158
rngnon-unital ring df-rng 20073 Rng Yes isrng 20074, rngabl 20075, rnglz 20085
rotrotation No 3anrot 1099, 3orrot 1091
seliminates need for syllogism (suffix) No ancoms 458
sb(proper) substitution (of a set) df-sb 2068 [𝑦 / 𝑥]𝜑 Yes spsbe 2087, sbimi 2079
sbc(proper) substitution of a class df-sbc 3738 [𝐴 / 𝑥]𝜑 Yes sbc2or 3746, sbcth 3752
scascalar df-sca 17179 (Scalar‘𝐻) Yes resssca 17249, mgpsca 20066
simpsimple, simplification No simpl 482, simp3r3 1284
snsingleton df-sn 4576 {𝐴} Yes eldifsn 4737
spspecialization No spsbe 2087, spei 2396
sssubset df-ss 3915 𝐴𝐵 Yes difss 4085
structstructure df-struct 17060 Struct Yes brstruct 17061, structfn 17069
subsubtract df-sub 11353 (𝐴𝐵) Yes subval 11358, subaddi 11455
supsupremum df-sup 9333 sup(𝐴, 𝐵, < ) Yes fisupcl 9361, supmo 9343
suppsupport (of a function) df-supp 8097 (𝐹 supp 𝑍) Yes ressuppfi 9286, mptsuppd 8123
swapswap (two parts within a theorem) No rabswap 3405, 2reuswap 3701
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4202, cnvsym 6065
symgsymmetric group df-symg 19284 (SymGrp‘𝐴) Yes symghash 19292, pgrpsubgsymg 19323
t times (see "mul"), for all-constant theorems df-mul 11025 (3 · 2) = 6 Yes 3t2e6 12293
th, t theorem No nfth 1802, sbcth 3752, weth 10393, ancomst 464
tptriple df-tp 4580 {𝐴, 𝐵, 𝐶} Yes eltpi 4640, tpeq1 4694
trtransitive No bitrd 279, biantr 805
tru, t true, truth df-tru 1544 Yes bitru 1550, truanfal 1575, biimt 360
ununion df-un 3903 (𝐴𝐵) Yes uneqri 4105, uncom 4107
unitunit (in a ring) df-unit 20278 (Unit‘𝑅) Yes isunit 20293, nzrunit 20441
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1540, vex 3441, velpw 4554, vtoclf 3518
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2392
vtx vertex df-vtx 28978 (Vtx‘𝐺) Yes vtxval0 29019, opvtxov 28985
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1944
wweak (version of a theorem) (suffix) No ax11w 2135, spnfw 1980
wrdword df-word 14423 Word 𝑆 Yes iswrdb 14429, wrdfn 14437, ffz0iswrd 14450
xpcross product (Cartesian product) df-xp 5625 (𝐴 × 𝐵) Yes elxp 5642, opelxpi 5656, xpundi 5688
xreXtended reals df-xr 11157 * Yes ressxr 11163, rexr 11165, 0xr 11166
z integers (from German "Zahlen") df-z 12476 Yes elz 12477, zcn 12480
zn ring of integers mod 𝑁 df-zn 21445 (ℤ/nℤ‘𝑁) Yes znval 21474, zncrng 21483, znhash 21497
zringring of integers df-zring 21386 ring Yes zringbas 21392, zringcrng 21387
0, z slashed zero (empty set) df-nul 4283 Yes n0i 4289, vn0 4294; snnz 4728, prnz 4729

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 𝜑
Assertion
Ref Expression
conventions-labels 𝜑

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator