MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 30425
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 30424 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3069"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 22625: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2666 and stirling 45999.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1837, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3260.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15923. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴𝐵) is defined in df-dif 3979, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴𝐵 has syntax label fragment "ss" because it is defined in df-ss 3993. Most theorem names follow from these fragments, for example, the theorem proving (𝐴𝐵) ⊆ 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4159. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4649), and the pair construct {𝐴, 𝐵} has fragment "pr" ( from df-pr 4651). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴𝐵 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐵 ∖ {𝐶}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4811. An "n" is often used for negation (¬), e.g., nan 829.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers (even though its definition is in df-c 11184) and "re" represents real numbers (Definition df-r 11188). The empty set often uses fragment 0, even though it is defined in df-nul 4353. The syntax construct (𝐴 + 𝐵) usually uses the fragment "add" (which is consistent with df-add 11189), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐵) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12422.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 16192 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 16112) we have value cosval 16165 and closure coscl 16169.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 30427 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1938 versus 19.21 2208. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as 𝑥𝜑 in 19.21 2208). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1913. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1931. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2579 derived from eu6 2577. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (, "iff" , "if and only if"), e.g., sspwb 5469. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2417 (cbval 2406 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3572. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 583), commutes (e.g., biimpac 478)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as 𝑥𝜑
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 476, rexlimiva 3153
ablAbelian group df-abl 19819 Abel Yes ablgrp 19821, zringabl 21479
absabsorption No ressabs 17302
absabsolute value (of a complex number) df-abs 15279 (abs‘𝐴) Yes absval 15281, absneg 15320, abs1 15340
adadding No adantr 480, ad2antlr 726
addadd (see "p") df-add 11189 (𝐴 + 𝐵) Yes addcl 11260, addcom 11470, addass 11265
al"for all" 𝑥𝜑 No alim 1808, alex 1824
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 396 (𝜑𝜓) Yes anor 983, iman 401, imnan 399
antantecedent No adantr 480
assassociative No biass 384, orass 920, mulass 11266
asymasymmetric, antisymmetric No intasym 6142, asymref 6143, posasymb 18383
axaxiom No ax6dgen 2128, ax1cn 11212
bas, base base (set of an extensible structure) df-base 17253 (Base‘𝑆) Yes baseval 17254, ressbas 17287, cnfldbas 21385
b, bibiconditional ("iff", "if and only if") df-bi 207 (𝜑𝜓) Yes impbid 212, sspwb 5469
brbinary relation df-br 5167 𝐴𝑅𝐵 Yes brab1 5214, brun 5217
ccommutes, commuted (suffix) No biimpac 478
ccontraction (suffix) No sylc 65, syl2anc 583
cbvchange bound variable No cbvalivw 2006, cbvrex 3371
cdmcodomain No ffvelcdm 7110, focdmex 7990
clclosure No ifclda 4583, ovrcl 7484, zaddcl 12677
cncomplex numbers df-c 11184 Yes nnsscn 12292, nncn 12295
cnfldfield of complex numbers df-cnfld 21382 fld Yes cnfldbas 21385, cnfldinv 21432
cntzcentralizer df-cntz 19351 (Cntz‘𝑀) Yes cntzfval 19354, dprdfcntz 20053
cnvconverse df-cnv 5703 𝐴 Yes opelcnvg 5900, f1ocnv 6869
cocomposition df-co 5704 (𝐴𝐵) Yes cnvco 5905, fmptco 7158
comcommutative No orcom 869, bicomi 224, eqcomi 2749
concontradiction, contraposition No condan 817, con2d 134
csbclass substitution df-csb 3922 𝐴 / 𝑥𝐵 Yes csbid 3934, csbie2g 3964
cygcyclic group df-cyg 19914 CycGrp Yes iscyg 19915, zringcyg 21497
ddeduction form (suffix) No idd 24, impbid 212
df(alternate) definition (prefix) No dfrel2 6215, dffn2 6744
di, distrdistributive No andi 1008, imdi 389, ordi 1006, difindi 4311, ndmovdistr 7633
difclass difference df-dif 3979 (𝐴𝐵) Yes difss 4159, difindi 4311
divdivision df-div 11942 (𝐴 / 𝐵) Yes divcl 11949, divval 11945, divmul 11946
dmdomain df-dm 5705 dom 𝐴 Yes dmmpt 6266, iswrddm0 14580
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2732 𝐴 = 𝐵 Yes 2p2e4 12422, uneqri 4179, equtr 2020
edgedge df-edg 29075 (Edg‘𝐺) Yes edgopval 29078, usgredgppr 29223
elelement of 𝐴𝐵 Yes eldif 3986, eldifsn 4811, elssuni 4961
enequinumerous df-en 𝐴𝐵 Yes domen 9015, enfi 9247
eu"there exists exactly one" eu6 2577 ∃!𝑥𝜑 Yes euex 2580, euabsn 4751
exexists (i.e. is a set) ∈ V No brrelex1 5748, 0ex 5325
ex, e"there exists (at least one)" df-ex 1778 𝑥𝜑 Yes exim 1832, alex 1824
expexport No expt 177, expcom 413
f"not free in" (suffix) No equs45f 2467, sbf 2272
ffunction df-f 6572 𝐹:𝐴𝐵 Yes fssxp 6770, opelf 6777
falfalse df-fal 1550 Yes bifal 1553, falantru 1572
fifinite intersection df-fi 9474 (fi‘𝐵) Yes fival 9475, inelfi 9481
fi, finfinite df-fin 9001 Fin Yes isfi 9030, snfi 9103, onfin 9287
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 37944) df-field 20748 Field Yes isfld 20756, fldidom 20787
fnfunction with domain df-fn 6571 𝐴 Fn 𝐵 Yes ffn 6742, fndm 6677
frgpfree group df-frgp 19746 (freeGrp‘𝐼) Yes frgpval 19794, frgpadd 19799
fsuppfinitely supported function df-fsupp 9426 𝑅 finSupp 𝑍 Yes isfsupp 9429, fdmfisuppfi 9437, fsuppco 9465
funfunction df-fun 6570 Fun 𝐹 Yes funrel 6590, ffun 6745
fvfunction value df-fv 6576 (𝐹𝐴) Yes fvres 6934, swrdfv 14690
fzfinite set of sequential integers df-fz 13562 (𝑀...𝑁) Yes fzval 13563, eluzfz 13573
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13676, fz0tp 13679
fzohalf-open integer range df-fzo 13706 (𝑀..^𝑁) Yes elfzo 13712, elfzofz 13726
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7769
grgraph No uhgrf 29089, isumgr 29122, usgrres1 29342
grpgroup df-grp 18970 Grp Yes isgrp 18973, tgpgrp 24099
gsumgroup sum df-gsum 17496 (𝐺 Σg 𝐹) Yes gsumval 18709, gsumwrev 19403
hashsize (of a set) df-hash 14374 (♯‘𝐴) Yes hashgval 14376, hashfz1 14389, hashcl 14399
hbhypothesis builder (prefix) No hbxfrbi 1823, hbald 2169, hbequid 38857
hm(monoid, group, ring, ...) homomorphism No ismhm 18814, isghm 19249, isrhm 20498
iinference (suffix) No eleq1i 2835, tcsni 9806
iimplication (suffix) No brwdomi 9631, infeq5i 9699
ididentity No biid 261
iedgindexed edge df-iedg 29026 (iEdg‘𝐺) Yes iedgval0 29067, edgiedgb 29081
idmidempotent No anidm 564, tpidm13 4781
im, impimplication (label often omitted) df-im 15144 (𝐴𝐵) Yes iman 401, imnan 399, impbidd 210
im(group, ring, ...) isomorphism No isgim 19296, rimrcl 20502
imaimage df-ima 5708 (𝐴𝐵) Yes resima 6039, imaundi 6176
impimport No biimpa 476, impcom 407
inintersection df-in 3983 (𝐴𝐵) Yes elin 3992, incom 4230
infinfimum df-inf 9506 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9564, infiso 9571
is...is (something a) ...? No isring 20258
jjoining, disjoining No jc 161, jaoi 856
lleft No olcd 873, simpl 482
mapmapping operation or set exponentiation df-map 8880 (𝐴m 𝐵) Yes mapvalg 8888, elmapex 8900
matmatrix df-mat 22425 (𝑁 Mat 𝑅) Yes matval 22428, matring 22462
mdetdeterminant (of a square matrix) df-mdet 22604 (𝑁 maDet 𝑅) Yes mdetleib 22606, mdetrlin 22621
mgmmagma df-mgm 18672 Magma Yes mgmidmo 18692, mgmlrid 18699, ismgm 18673
mgpmultiplicative group df-mgp 20156 (mulGrp‘𝑅) Yes mgpress 20170, ringmgp 20260
mndmonoid df-mnd 18767 Mnd Yes mndass 18775, mndodcong 19578
mo"there exists at most one" df-mo 2543 ∃*𝑥𝜑 Yes eumo 2581, moim 2547
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7448 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7558, resmpo 7564
mptmodus ponendo tollens No mptnan 1766, mptxor 1767
mptmaps-to notation for a function df-mpt 5250 (𝑥𝐴𝐵) Yes fconstmpt 5757, resmpt 6061
mulmultiplication (see "t") df-mul 11190 (𝐴 · 𝐵) Yes mulcl 11262, divmul 11946, mulcom 11264, mulass 11266
n, notnot ¬ 𝜑 Yes nan 829, notnotr 130
nenot equaldf-ne 𝐴𝐵 Yes exmidne 2956, neeqtrd 3016
nelnot element ofdf-nel 𝐴𝐵 Yes neli 3054, nnel 3062
ne0not equal to zero (see n0) ≠ 0 No negne0d 11639, ine0 11719, gt0ne0 11749
nf "not free in" (prefix) df-nf 1782 𝑥𝜑 Yes nfnd 1857
ngpnormed group df-ngp 24609 NrmGrp Yes isngp 24622, ngptps 24628
nmnorm (on a group or ring) df-nm 24608 (norm‘𝑊) Yes nmval 24615, subgnm 24659
nnpositive integers df-nn 12288 Yes nnsscn 12292, nncn 12295
nn0nonnegative integers df-n0 12548 0 Yes nnnn0 12554, nn0cn 12557
n0not the empty set (see ne0) ≠ ∅ No n0i 4363, vn0 4368, ssn0 4427
OLDold, obsolete (to be removed soon) No 19.43OLD 1882
onordinal number df-on 6394 𝐴 ∈ On Yes elon 6399, 1on 8528 onelon 6415
opordered pair df-op 4655 𝐴, 𝐵 Yes dfopif 4894, opth 5496
oror df-or 847 (𝜑𝜓) Yes orcom 869, anor 983
otordered triple df-ot 4657 𝐴, 𝐵, 𝐶 Yes euotd 5532, fnotovb 7494
ovoperation value df-ov 7446 (𝐴𝐹𝐵) Yes fnotovb 7494, fnovrn 7619
pplus (see "add"), for all-constant theorems df-add 11189 (3 + 2) = 5 Yes 3p2e5 12438
pfxprefix df-pfx 14713 (𝑊 prefix 𝐿) Yes pfxlen 14725, ccatpfx 14743
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8881 (𝐴pm 𝐵) Yes elpmi 8898, pmsspw 8929
prpair df-pr 4651 {𝐴, 𝐵} Yes elpr 4672, prcom 4757, prid1g 4785, prnz 4802
prm, primeprime (number) df-prm 16713 Yes 1nprm 16720, dvdsprime 16728
pssproper subset df-pss 3996 𝐴𝐵 Yes pssss 4121, sspsstri 4128
q rational numbers ("quotients") df-q 13008 Yes elq 13009
rreversed (suffix) No pm4.71r 558, caovdir 7678
rright No orcd 872, simprl 770
rabrestricted class abstraction df-rab 3444 {𝑥𝐴𝜑} Yes rabswap 3453, df-oprab 7447
ralrestricted universal quantification df-ral 3068 𝑥𝐴𝜑 Yes ralnex 3078, ralrnmpo 7583
rclreverse closure No ndmfvrcl 6951, nnarcl 8666
rereal numbers df-r 11188 Yes recn 11268, 0re 11286
relrelation df-rel 5702 Rel 𝐴 Yes brrelex1 5748, relmpoopab 8129
resrestriction df-res 5707 (𝐴𝐵) Yes opelres 6010, f1ores 6871
reurestricted existential uniqueness df-reu 3389 ∃!𝑥𝐴𝜑 Yes nfreud 3440, reurex 3392
rexrestricted existential quantification df-rex 3077 𝑥𝐴𝜑 Yes rexnal 3106, rexrnmpo 7584
rmorestricted "at most one" df-rmo 3388 ∃*𝑥𝐴𝜑 Yes nfrmod 3439, nrexrmo 3409
rnrange df-rn 5706 ran 𝐴 Yes elrng 5911, rncnvcnv 5954
ring(unital) ring df-ring 20256 Ring Yes ringidval 20204, isring 20258, ringgrp 20259
rngnon-unital ring df-rng 20174 Rng Yes isrng 20175, rngabl 20176, rnglz 20186
rotrotation No 3anrot 1100, 3orrot 1092
seliminates need for syllogism (suffix) No ancoms 458
sb(proper) substitution (of a set) df-sb 2065 [𝑦 / 𝑥]𝜑 Yes spsbe 2082, sbimi 2074
sbc(proper) substitution of a class df-sbc 3805 [𝐴 / 𝑥]𝜑 Yes sbc2or 3813, sbcth 3819
scascalar df-sca 17321 (Scalar‘𝐻) Yes resssca 17396, mgpsca 20163
simpsimple, simplification No simpl 482, simp3r3 1283
snsingleton df-sn 4649 {𝐴} Yes eldifsn 4811
spspecialization No spsbe 2082, spei 2402
sssubset df-ss 3993 𝐴𝐵 Yes difss 4159
structstructure df-struct 17188 Struct Yes brstruct 17189, structfn 17197
subsubtract df-sub 11516 (𝐴𝐵) Yes subval 11521, subaddi 11617
supsupremum df-sup 9505 sup(𝐴, 𝐵, < ) Yes fisupcl 9532, supmo 9515
suppsupport (of a function) df-supp 8196 (𝐹 supp 𝑍) Yes ressuppfi 9458, mptsuppd 8222
swapswap (two parts within a theorem) No rabswap 3453, 2reuswap 3768
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4272, cnvsym 6139
symgsymmetric group df-symg 19405 (SymGrp‘𝐴) Yes symghash 19413, pgrpsubgsymg 19445
t times (see "mul"), for all-constant theorems df-mul 11190 (3 · 2) = 6 Yes 3t2e6 12453
th, t theorem No nfth 1799, sbcth 3819, weth 10558, ancomst 464
tptriple df-tp 4653 {𝐴, 𝐵, 𝐶} Yes eltpi 4711, tpeq1 4767
trtransitive No bitrd 279, biantr 805
tru, t true, truth df-tru 1540 Yes bitru 1546, truanfal 1571, biimt 360
ununion df-un 3981 (𝐴𝐵) Yes uneqri 4179, uncom 4181
unitunit (in a ring) df-unit 20378 (Unit‘𝑅) Yes isunit 20393, nzrunit 20544
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1536, vex 3492, velpw 4627, vtoclf 3576
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2398
vtx vertex df-vtx 29025 (Vtx‘𝐺) Yes vtxval0 29066, opvtxov 29032
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1942
wweak (version of a theorem) (suffix) No ax11w 2130, spnfw 1979
wrdword df-word 14557 Word 𝑆 Yes iswrdb 14562, wrdfn 14570, ffz0iswrd 14583
xpcross product (Cartesian product) df-xp 5701 (𝐴 × 𝐵) Yes elxp 5718, opelxpi 5732, xpundi 5763
xreXtended reals df-xr 11322 * Yes ressxr 11328, rexr 11330, 0xr 11331
z integers (from German "Zahlen") df-z 12634 Yes elz 12635, zcn 12638
zn ring of integers mod 𝑁 df-zn 21534 (ℤ/nℤ‘𝑁) Yes znval 21567, zncrng 21580, znhash 21594
zringring of integers df-zring 21475 ring Yes zringbas 21481, zringcrng 21476
0, z slashed zero (empty set) df-nul 4353 Yes n0i 4363, vn0 4368; snnz 4801, prnz 4802

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 𝜑
Assertion
Ref Expression
conventions-labels 𝜑

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator