MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 30267
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 30266 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3053"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 22538: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2651 and stirling 45540.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1833, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3242.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15859. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴 βˆ– 𝐡) is defined in df-dif 3948, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴 βŠ† 𝐡 has syntax label fragment "ss" because it is defined in df-ss 3962. Most theorem names follow from these fragments, for example, the theorem proving (𝐴 βˆ– 𝐡) βŠ† 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4129. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4630), and the pair construct {𝐴, 𝐡} has fragment "pr" ( from df-pr 4632). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴 ∈ 𝐡 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐡 βˆ– {𝐢}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4791. An "n" is often used for negation (Β¬), e.g., nan 828.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers β„‚ (even though its definition is in df-c 11144) and "re" represents real numbers ℝ (Definition df-r 11148). The empty set βˆ… often uses fragment 0, even though it is defined in df-nul 4324. The syntax construct (𝐴 + 𝐡) usually uses the fragment "add" (which is consistent with df-add 11149), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐡) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12377.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 16126 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 16046) we have value cosval 16099 and closure coscl 16103.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 30269 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1934 versus 19.21 2195. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as β„²π‘₯πœ‘ in 19.21 2195). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1909. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1927. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2564 derived from eu6 2562. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (↔, "iff" , "if and only if"), e.g., sspwb 5450. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2402 (cbval 2391 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3538. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 582), commutes (e.g., biimpac 477)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as β„²π‘₯πœ‘
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 475, rexlimiva 3137
ablAbelian group df-abl 19742 Abel Yes ablgrp 19744, zringabl 21381
absabsorption No ressabs 17229
absabsolute value (of a complex number) df-abs 15215 (absβ€˜π΄) Yes absval 15217, absneg 15256, abs1 15276
adadding No adantr 479, ad2antlr 725
addadd (see "p") df-add 11149 (𝐴 + 𝐡) Yes addcl 11220, addcom 11430, addass 11225
al"for all" βˆ€π‘₯πœ‘ No alim 1804, alex 1820
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 395 (πœ‘ ∧ πœ“) Yes anor 980, iman 400, imnan 398
antantecedent No adantr 479
assassociative No biass 383, orass 919, mulass 11226
asymasymmetric, antisymmetric No intasym 6121, asymref 6122, posasymb 18310
axaxiom No ax6dgen 2116, ax1cn 11172
bas, base base (set of an extensible structure) df-base 17180 (Baseβ€˜π‘†) Yes baseval 17181, ressbas 17214, cnfldbas 21287
b, bibiconditional ("iff", "if and only if") df-bi 206 (πœ‘ ↔ πœ“) Yes impbid 211, sspwb 5450
brbinary relation df-br 5149 𝐴𝑅𝐡 Yes brab1 5196, brun 5199
ccommutes, commuted (suffix) No biimpac 477
ccontraction (suffix) No sylc 65, syl2anc 582
cbvchange bound variable No cbvalivw 2002, cbvrex 3347
cdmcodomain No ffvelcdm 7088, focdmex 7958
clclosure No ifclda 4564, ovrcl 7458, zaddcl 12632
cncomplex numbers df-c 11144 β„‚ Yes nnsscn 12247, nncn 12250
cnfldfield of complex numbers df-cnfld 21284 β„‚fld Yes cnfldbas 21287, cnfldinv 21334
cntzcentralizer df-cntz 19272 (Cntzβ€˜π‘€) Yes cntzfval 19275, dprdfcntz 19976
cnvconverse df-cnv 5685 ◑𝐴 Yes opelcnvg 5882, f1ocnv 6848
cocomposition df-co 5686 (𝐴 ∘ 𝐡) Yes cnvco 5887, fmptco 7136
comcommutative No orcom 868, bicomi 223, eqcomi 2734
concontradiction, contraposition No condan 816, con2d 134
csbclass substitution df-csb 3891 ⦋𝐴 / π‘₯⦌𝐡 Yes csbid 3903, csbie2g 3933
cygcyclic group df-cyg 19837 CycGrp Yes iscyg 19838, zringcyg 21399
ddeduction form (suffix) No idd 24, impbid 211
df(alternate) definition (prefix) No dfrel2 6193, dffn2 6723
di, distrdistributive No andi 1005, imdi 388, ordi 1003, difindi 4281, ndmovdistr 7608
difclass difference df-dif 3948 (𝐴 βˆ– 𝐡) Yes difss 4129, difindi 4281
divdivision df-div 11902 (𝐴 / 𝐡) Yes divcl 11908, divval 11904, divmul 11905
dmdomain df-dm 5687 dom 𝐴 Yes dmmpt 6244, iswrddm0 14520
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2717 𝐴 = 𝐡 Yes 2p2e4 12377, uneqri 4149, equtr 2016
edgedge df-edg 28917 (Edgβ€˜πΊ) Yes edgopval 28920, usgredgppr 29065
elelement of 𝐴 ∈ 𝐡 Yes eldif 3955, eldifsn 4791, elssuni 4940
enequinumerous df-en 𝐴 β‰ˆ 𝐡 Yes domen 8980, enfi 9213
eu"there exists exactly one" eu6 2562 βˆƒ!π‘₯πœ‘ Yes euex 2565, euabsn 4731
exexists (i.e. is a set) ∈ V No brrelex1 5730, 0ex 5307
ex, e"there exists (at least one)" df-ex 1774 βˆƒπ‘₯πœ‘ Yes exim 1828, alex 1820
expexport No expt 177, expcom 412
f"not free in" (suffix) No equs45f 2452, sbf 2257
ffunction df-f 6551 𝐹:𝐴⟢𝐡 Yes fssxp 6749, opelf 6756
falfalse df-fal 1546 βŠ₯ Yes bifal 1549, falantru 1568
fifinite intersection df-fi 9434 (fiβ€˜π΅) Yes fival 9435, inelfi 9441
fi, finfinite df-fin 8966 Fin Yes isfi 8995, snfi 9067, onfin 9253
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 37535) df-field 20631 Field Yes isfld 20639, fldidom 21262
fnfunction with domain df-fn 6550 𝐴 Fn 𝐡 Yes ffn 6721, fndm 6656
frgpfree group df-frgp 19669 (freeGrpβ€˜πΌ) Yes frgpval 19717, frgpadd 19722
fsuppfinitely supported function df-fsupp 9386 𝑅 finSupp 𝑍 Yes isfsupp 9389, fdmfisuppfi 9397, fsuppco 9425
funfunction df-fun 6549 Fun 𝐹 Yes funrel 6569, ffun 6724
fvfunction value df-fv 6555 (πΉβ€˜π΄) Yes fvres 6913, swrdfv 14630
fzfinite set of sequential integers df-fz 13517 (𝑀...𝑁) Yes fzval 13518, eluzfz 13528
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13631, fz0tp 13634
fzohalf-open integer range df-fzo 13660 (𝑀..^𝑁) Yes elfzo 13666, elfzofz 13680
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7744
grgraph No uhgrf 28931, isumgr 28964, usgrres1 29184
grpgroup df-grp 18897 Grp Yes isgrp 18900, tgpgrp 24012
gsumgroup sum df-gsum 17423 (𝐺 Ξ£g 𝐹) Yes gsumval 18636, gsumwrev 19324
hashsize (of a set) df-hash 14322 (β™―β€˜π΄) Yes hashgval 14324, hashfz1 14337, hashcl 14347
hbhypothesis builder (prefix) No hbxfrbi 1819, hbald 2157, hbequid 38450
hm(monoid, group, ring, ...) homomorphism No ismhm 18741, isghm 19174, isrhm 20421
iinference (suffix) No eleq1i 2816, tcsni 9766
iimplication (suffix) No brwdomi 9591, infeq5i 9659
ididentity No biid 260
iedgindexed edge df-iedg 28868 (iEdgβ€˜πΊ) Yes iedgval0 28909, edgiedgb 28923
idmidempotent No anidm 563, tpidm13 4761
im, impimplication (label often omitted) df-im 15080 (𝐴 β†’ 𝐡) Yes iman 400, imnan 398, impbidd 209
im(group, ring, ...) isomorphism No isgim 19220, rimrcl 20425
imaimage df-ima 5690 (𝐴 β€œ 𝐡) Yes resima 6019, imaundi 6154
impimport No biimpa 475, impcom 406
inintersection df-in 3952 (𝐴 ∩ 𝐡) Yes elin 3961, incom 4200
infinfimum df-inf 9466 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9524, infiso 9531
is...is (something a) ...? No isring 20181
jjoining, disjoining No jc 161, jaoi 855
lleft No olcd 872, simpl 481
mapmapping operation or set exponentiation df-map 8845 (𝐴 ↑m 𝐡) Yes mapvalg 8853, elmapex 8865
matmatrix df-mat 22338 (𝑁 Mat 𝑅) Yes matval 22341, matring 22375
mdetdeterminant (of a square matrix) df-mdet 22517 (𝑁 maDet 𝑅) Yes mdetleib 22519, mdetrlin 22534
mgmmagma df-mgm 18599 Magma Yes mgmidmo 18619, mgmlrid 18626, ismgm 18600
mgpmultiplicative group df-mgp 20079 (mulGrpβ€˜π‘…) Yes mgpress 20093, ringmgp 20183
mndmonoid df-mnd 18694 Mnd Yes mndass 18702, mndodcong 19501
mo"there exists at most one" df-mo 2528 βˆƒ*π‘₯πœ‘ Yes eumo 2566, moim 2532
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7422 (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) Yes mpompt 7532, resmpo 7538
mptmodus ponendo tollens No mptnan 1762, mptxor 1763
mptmaps-to notation for a function df-mpt 5232 (π‘₯ ∈ 𝐴 ↦ 𝐡) Yes fconstmpt 5739, resmpt 6041
mpt2maps-to notation for an operation (deprecated). We are in the process of replacing mpt2 with mpo in labels. df-mpo 7422 (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) Yes mpompt 7532, resmpo 7538
mulmultiplication (see "t") df-mul 11150 (𝐴 Β· 𝐡) Yes mulcl 11222, divmul 11905, mulcom 11224, mulass 11226
n, notnot Β¬ πœ‘ Yes nan 828, notnotr 130
nenot equaldf-ne 𝐴 β‰  𝐡 Yes exmidne 2940, neeqtrd 3000
nelnot element ofdf-nel 𝐴 βˆ‰ 𝐡 Yes neli 3038, nnel 3046
ne0not equal to zero (see n0) β‰  0 No negne0d 11599, ine0 11679, gt0ne0 11709
nf "not free in" (prefix) df-nf 1778 β„²π‘₯πœ‘ Yes nfnd 1853
ngpnormed group df-ngp 24522 NrmGrp Yes isngp 24535, ngptps 24541
nmnorm (on a group or ring) df-nm 24521 (normβ€˜π‘Š) Yes nmval 24528, subgnm 24572
nnpositive integers df-nn 12243 β„• Yes nnsscn 12247, nncn 12250
nn0nonnegative integers df-n0 12503 β„•0 Yes nnnn0 12509, nn0cn 12512
n0not the empty set (see ne0) β‰  βˆ… No n0i 4334, vn0 4339, ssn0 4401
OLDold, obsolete (to be removed soon) No 19.43OLD 1878
onordinal number df-on 6373 𝐴 ∈ On Yes elon 6378, 1on 8497 onelon 6394
opordered pair df-op 4636 ⟨𝐴, 𝐡⟩ Yes dfopif 4871, opth 5477
oror df-or 846 (πœ‘ ∨ πœ“) Yes orcom 868, anor 980
otordered triple df-ot 4638 ⟨𝐴, 𝐡, 𝐢⟩ Yes euotd 5514, fnotovb 7468
ovoperation value df-ov 7420 (𝐴𝐹𝐡) Yes fnotovb 7468, fnovrn 7594
pplus (see "add"), for all-constant theorems df-add 11149 (3 + 2) = 5 Yes 3p2e5 12393
pfxprefix df-pfx 14653 (π‘Š prefix 𝐿) Yes pfxlen 14665, ccatpfx 14683
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8846 (𝐴 ↑pm 𝐡) Yes elpmi 8863, pmsspw 8894
prpair df-pr 4632 {𝐴, 𝐡} Yes elpr 4653, prcom 4737, prid1g 4765, prnz 4782
prm, primeprime (number) df-prm 16642 β„™ Yes 1nprm 16649, dvdsprime 16657
pssproper subset df-pss 3965 𝐴 ⊊ 𝐡 Yes pssss 4092, sspsstri 4099
q rational numbers ("quotients") df-q 12963 β„š Yes elq 12964
rreversed (suffix) No pm4.71r 557, caovdir 7653
rright No orcd 871, simprl 769
rabrestricted class abstraction df-rab 3420 {π‘₯ ∈ 𝐴 ∣ πœ‘} Yes rabswap 3429, df-oprab 7421
ralrestricted universal quantification df-ral 3052 βˆ€π‘₯ ∈ π΄πœ‘ Yes ralnex 3062, ralrnmpo 7558
rclreverse closure No ndmfvrcl 6930, nnarcl 8635
rereal numbers df-r 11148 ℝ Yes recn 11228, 0re 11246
relrelation df-rel 5684 Rel 𝐴 Yes brrelex1 5730, relmpoopab 8097
resrestriction df-res 5689 (𝐴 β†Ύ 𝐡) Yes opelres 5990, f1ores 6850
reurestricted existential uniqueness df-reu 3365 βˆƒ!π‘₯ ∈ π΄πœ‘ Yes nfreud 3416, reurex 3368
rexrestricted existential quantification df-rex 3061 βˆƒπ‘₯ ∈ π΄πœ‘ Yes rexnal 3090, rexrnmpo 7559
rmorestricted "at most one" df-rmo 3364 βˆƒ*π‘₯ ∈ π΄πœ‘ Yes nfrmod 3415, nrexrmo 3385
rnrange df-rn 5688 ran 𝐴 Yes elrng 5893, rncnvcnv 5935
ring(unital) ring df-ring 20179 Ring Yes ringidval 20127, isring 20181, ringgrp 20182
rngnon-unital ring df-rng 20097 Rng Yes isrng 20098, rngabl 20099, rnglz 20109
rotrotation No 3anrot 1097, 3orrot 1089
seliminates need for syllogism (suffix) No ancoms 457
sb(proper) substitution (of a set) df-sb 2060 [𝑦 / π‘₯]πœ‘ Yes spsbe 2077, sbimi 2069
sbc(proper) substitution of a class df-sbc 3775 [𝐴 / π‘₯]πœ‘ Yes sbc2or 3783, sbcth 3789
scascalar df-sca 17248 (Scalarβ€˜π») Yes resssca 17323, mgpsca 20086
simpsimple, simplification No simpl 481, simp3r3 1280
snsingleton df-sn 4630 {𝐴} Yes eldifsn 4791
spspecialization No spsbe 2077, spei 2387
sssubset df-ss 3962 𝐴 βŠ† 𝐡 Yes difss 4129
structstructure df-struct 17115 Struct Yes brstruct 17116, structfn 17124
subsubtract df-sub 11476 (𝐴 βˆ’ 𝐡) Yes subval 11481, subaddi 11577
supsupremum df-sup 9465 sup(𝐴, 𝐡, < ) Yes fisupcl 9492, supmo 9475
suppsupport (of a function) df-supp 8164 (𝐹 supp 𝑍) Yes ressuppfi 9418, mptsuppd 8190
swapswap (two parts within a theorem) No rabswap 3429, 2reuswap 3739
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4242, cnvsym 6118
symgsymmetric group df-symg 19326 (SymGrpβ€˜π΄) Yes symghash 19336, pgrpsubgsymg 19368
t times (see "mul"), for all-constant theorems df-mul 11150 (3 Β· 2) = 6 Yes 3t2e6 12408
th, t theorem No nfth 1795, sbcth 3789, weth 10518, ancomst 463
tptriple df-tp 4634 {𝐴, 𝐡, 𝐢} Yes eltpi 4692, tpeq1 4747
trtransitive No bitrd 278, biantr 804
tru, t true, truth df-tru 1536 ⊀ Yes bitru 1542, truanfal 1567, biimt 359
ununion df-un 3950 (𝐴 βˆͺ 𝐡) Yes uneqri 4149, uncom 4151
unitunit (in a ring) df-unit 20301 (Unitβ€˜π‘…) Yes isunit 20316, nzrunit 20465
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1532, vex 3467, velpw 4608, vtoclf 3543
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2383
vtx vertex df-vtx 28867 (Vtxβ€˜πΊ) Yes vtxval0 28908, opvtxov 28874
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1938
wweak (version of a theorem) (suffix) No ax11w 2118, spnfw 1975
wrdword df-word 14497 Word 𝑆 Yes iswrdb 14502, wrdfn 14510, ffz0iswrd 14523
xpcross product (Cartesian product) df-xp 5683 (𝐴 Γ— 𝐡) Yes elxp 5700, opelxpi 5714, xpundi 5745
xreXtended reals df-xr 11282 ℝ* Yes ressxr 11288, rexr 11290, 0xr 11291
z integers (from German "Zahlen") df-z 12589 β„€ Yes elz 12590, zcn 12593
zn ring of integers mod 𝑁 df-zn 21436 (β„€/nβ„€β€˜π‘) Yes znval 21469, zncrng 21482, znhash 21496
zringring of integers df-zring 21377 β„€ring Yes zringbas 21383, zringcrng 21378
0, z slashed zero (empty set) df-nul 4324 βˆ… Yes n0i 4334, vn0 4339; snnz 4781, prnz 4782

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 πœ‘
Assertion
Ref Expression
conventions-labels πœ‘

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 πœ‘
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator