MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 30376
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 30375 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3049"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 22519: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2658 and stirling 46126.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1840, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3227.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15785. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴𝐵) is defined in df-dif 3905, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴𝐵 has syntax label fragment "ss" because it is defined in df-ss 3919. Most theorem names follow from these fragments, for example, the theorem proving (𝐴𝐵) ⊆ 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4086. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4577), and the pair construct {𝐴, 𝐵} has fragment "pr" ( from df-pr 4579). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴𝐵 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐵 ∖ {𝐶}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4738. An "n" is often used for negation (¬), e.g., nan 829.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers (even though its definition is in df-c 11009) and "re" represents real numbers (Definition df-r 11013). The empty set often uses fragment 0, even though it is defined in df-nul 4284. The syntax construct (𝐴 + 𝐵) usually uses the fragment "add" (which is consistent with df-add 11014), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐵) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12252.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 16056 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 15974) we have value cosval 16029 and closure coscl 16033.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 30378 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1940 versus 19.21 2210. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as 𝑥𝜑 in 19.21 2210). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1915. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1933. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2571 derived from eu6 2569. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (, "iff" , "if and only if"), e.g., sspwb 5390. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2409 (cbval 2398 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3515. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 584), commutes (e.g., biimpac 478)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as 𝑥𝜑
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 476, rexlimiva 3125
ablAbelian group df-abl 19693 Abel Yes ablgrp 19695, zringabl 21386
absabsorption No ressabs 17156
absabsolute value (of a complex number) df-abs 15140 (abs‘𝐴) Yes absval 15142, absneg 15181, abs1 15201
adadding No adantr 480, ad2antlr 727
addadd (see "p") df-add 11014 (𝐴 + 𝐵) Yes addcl 11085, addcom 11296, addass 11090
al"for all" 𝑥𝜑 No alim 1811, alex 1827
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 396 (𝜑𝜓) Yes anor 984, iman 401, imnan 399
antantecedent No adantr 480
assassociative No biass 384, orass 921, mulass 11091
asymasymmetric, antisymmetric No intasym 6062, asymref 6063, posasymb 18222
axaxiom No ax6dgen 2131, ax1cn 11037
bas, base base (set of an extensible structure) df-base 17118 (Base‘𝑆) Yes baseval 17119, ressbas 17144, cnfldbas 21293
b, bibiconditional ("iff", "if and only if") df-bi 207 (𝜑𝜓) Yes impbid 212, sspwb 5390
brbinary relation df-br 5092 𝐴𝑅𝐵 Yes brab1 5139, brun 5142
ccommutes, commuted (suffix) No biimpac 478
ccontraction (suffix) No sylc 65, syl2anc 584
cbvchange bound variable No cbvalivw 2008, cbvrex 3329
cdmcodomain No ffvelcdm 7014, focdmex 7888
clclosure No ifclda 4511, ovrcl 7387, zaddcl 12509
cncomplex numbers df-c 11009 Yes nnsscn 12127, nncn 12130
cnfldfield of complex numbers df-cnfld 21290 fld Yes cnfldbas 21293, cnfldinv 21337
cntzcentralizer df-cntz 19227 (Cntz‘𝑀) Yes cntzfval 19230, dprdfcntz 19927
cnvconverse df-cnv 5624 𝐴 Yes opelcnvg 5820, f1ocnv 6775
cocomposition df-co 5625 (𝐴𝐵) Yes cnvco 5825, fmptco 7062
comcommutative No orcom 870, bicomi 224, eqcomi 2740
concontradiction, contraposition No condan 817, con2d 134
csbclass substitution df-csb 3851 𝐴 / 𝑥𝐵 Yes csbid 3863, csbie2g 3890
cygcyclic group df-cyg 19788 CycGrp Yes iscyg 19789, zringcyg 21404
ddeduction form (suffix) No idd 24, impbid 212
df(alternate) definition (prefix) No dfrel2 6136, dffn2 6653
di, distrdistributive No andi 1009, imdi 389, ordi 1007, difindi 4242, ndmovdistr 7535
difclass difference df-dif 3905 (𝐴𝐵) Yes difss 4086, difindi 4242
divdivision df-div 11772 (𝐴 / 𝐵) Yes divcl 11779, divval 11775, divmul 11776
dmdomain df-dm 5626 dom 𝐴 Yes dmmpt 6187, iswrddm0 14442
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2723 𝐴 = 𝐵 Yes 2p2e4 12252, uneqri 4106, equtr 2022
edgedge df-edg 29024 (Edg‘𝐺) Yes edgopval 29027, usgredgppr 29172
elelement of 𝐴𝐵 Yes eldif 3912, eldifsn 4738, elssuni 4889
enequinumerous df-en 𝐴𝐵 Yes domen 8884, enfi 9096
eu"there exists exactly one" eu6 2569 ∃!𝑥𝜑 Yes euex 2572, euabsn 4679
exexists (i.e. is a set) ∈ V No brrelex1 5669, 0ex 5245
ex, e"there exists (at least one)" df-ex 1781 𝑥𝜑 Yes exim 1835, alex 1827
expexport No expt 177, expcom 413
f"not free in" (suffix) No equs45f 2459, sbf 2273
ffunction df-f 6485 𝐹:𝐴𝐵 Yes fssxp 6678, opelf 6684
falfalse df-fal 1554 Yes bifal 1557, falantru 1576
fifinite intersection df-fi 9295 (fi‘𝐵) Yes fival 9296, inelfi 9302
fi, finfinite df-fin 8873 Fin Yes isfi 8898, snfi 8965, onfin 9124
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 38031) df-field 20645 Field Yes isfld 20653, fldidom 20684
fnfunction with domain df-fn 6484 𝐴 Fn 𝐵 Yes ffn 6651, fndm 6584
frgpfree group df-frgp 19620 (freeGrp‘𝐼) Yes frgpval 19668, frgpadd 19673
fsuppfinitely supported function df-fsupp 9246 𝑅 finSupp 𝑍 Yes isfsupp 9249, fdmfisuppfi 9258, fsuppco 9286
funfunction df-fun 6483 Fun 𝐹 Yes funrel 6498, ffun 6654
fvfunction value df-fv 6489 (𝐹𝐴) Yes fvres 6841, swrdfv 14553
fzfinite set of sequential integers df-fz 13405 (𝑀...𝑁) Yes fzval 13406, eluzfz 13416
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13522, fz0tp 13525
fzohalf-open integer range df-fzo 13552 (𝑀..^𝑁) Yes elfzo 13558, elfzofz 13572
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7673
grgraph No uhgrf 29038, isumgr 29071, usgrres1 29291
grpgroup df-grp 18846 Grp Yes isgrp 18849, tgpgrp 23991
gsumgroup sum df-gsum 17343 (𝐺 Σg 𝐹) Yes gsumval 18582, gsumwrev 19276
hashsize (of a set) df-hash 14235 (♯‘𝐴) Yes hashgval 14237, hashfz1 14250, hashcl 14260
hbhypothesis builder (prefix) No hbxfrbi 1826, hbald 2171, hbequid 38947
hm(monoid, group, ring, ...) homomorphism No ismhm 18690, isghm 19125, isrhm 20394
iinference (suffix) No eleq1i 2822, tcsni 9633
iimplication (suffix) No brwdomi 9454, infeq5i 9526
ididentity No biid 261
iedgindexed edge df-iedg 28975 (iEdg‘𝐺) Yes iedgval0 29016, edgiedgb 29030
idmidempotent No anidm 564, tpidm13 4709
im, impimplication (label often omitted) df-im 15005 (𝐴𝐵) Yes iman 401, imnan 399, impbidd 210
im(group, ring, ...) isomorphism No isgim 19172, rimrcl 20397
imaimage df-ima 5629 (𝐴𝐵) Yes resima 5964, imaundi 6096
impimport No biimpa 476, impcom 407
inintersection df-in 3909 (𝐴𝐵) Yes elin 3918, incom 4159
infinfimum df-inf 9327 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9387, infiso 9394
is...is (something a) ...? No isring 20153
jjoining, disjoining No jc 161, jaoi 857
lleft No olcd 874, simpl 482
mapmapping operation or set exponentiation df-map 8752 (𝐴m 𝐵) Yes mapvalg 8760, elmapex 8772
matmatrix df-mat 22321 (𝑁 Mat 𝑅) Yes matval 22324, matring 22356
mdetdeterminant (of a square matrix) df-mdet 22498 (𝑁 maDet 𝑅) Yes mdetleib 22500, mdetrlin 22515
mgmmagma df-mgm 18545 Magma Yes mgmidmo 18565, mgmlrid 18572, ismgm 18546
mgpmultiplicative group df-mgp 20057 (mulGrp‘𝑅) Yes mgpress 20066, ringmgp 20155
mndmonoid df-mnd 18640 Mnd Yes mndass 18648, mndodcong 19452
mo"there exists at most one" df-mo 2535 ∃*𝑥𝜑 Yes eumo 2573, moim 2539
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7351 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7460, resmpo 7466
mptmodus ponendo tollens No mptnan 1769, mptxor 1770
mptmaps-to notation for a function df-mpt 5173 (𝑥𝐴𝐵) Yes fconstmpt 5678, resmpt 5986
mulmultiplication (see "t") df-mul 11015 (𝐴 · 𝐵) Yes mulcl 11087, divmul 11776, mulcom 11089, mulass 11091
n, notnot ¬ 𝜑 Yes nan 829, notnotr 130
nenot equaldf-ne 𝐴𝐵 Yes exmidne 2938, neeqtrd 2997
nelnot element ofdf-nel 𝐴𝐵 Yes neli 3034, nnel 3042
ne0not equal to zero (see n0) ≠ 0 No negne0d 11467, ine0 11549, gt0ne0 11579
nf "not free in" (prefix) df-nf 1785 𝑥𝜑 Yes nfnd 1859
ngpnormed group df-ngp 24496 NrmGrp Yes isngp 24509, ngptps 24515
nmnorm (on a group or ring) df-nm 24495 (norm‘𝑊) Yes nmval 24502, subgnm 24546
nnpositive integers df-nn 12123 Yes nnsscn 12127, nncn 12130
nn0nonnegative integers df-n0 12379 0 Yes nnnn0 12385, nn0cn 12388
n0not the empty set (see ne0) ≠ ∅ No n0i 4290, vn0 4295, ssn0 4354
OLDold, obsolete (to be removed soon) No 19.43OLD 1884
onordinal number df-on 6310 𝐴 ∈ On Yes elon 6315, 1on 8397 onelon 6331
opordered pair df-op 4583 𝐴, 𝐵 Yes dfopif 4822, opth 5416
oror df-or 848 (𝜑𝜓) Yes orcom 870, anor 984
otordered triple df-ot 4585 𝐴, 𝐵, 𝐶 Yes euotd 5453, fnotovb 7398
ovoperation value df-ov 7349 (𝐴𝐹𝐵) Yes fnotovb 7398, fnovrn 7521
pplus (see "add"), for all-constant theorems df-add 11014 (3 + 2) = 5 Yes 3p2e5 12268
pfxprefix df-pfx 14576 (𝑊 prefix 𝐿) Yes pfxlen 14588, ccatpfx 14605
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8753 (𝐴pm 𝐵) Yes elpmi 8770, pmsspw 8801
prpair df-pr 4579 {𝐴, 𝐵} Yes elpr 4601, prcom 4685, prid1g 4713, prnz 4730
prm, primeprime (number) df-prm 16580 Yes 1nprm 16587, dvdsprime 16595
pssproper subset df-pss 3922 𝐴𝐵 Yes pssss 4048, sspsstri 4055
q rational numbers ("quotients") df-q 12844 Yes elq 12845
rreversed (suffix) No pm4.71r 558, caovdir 7580
rright No orcd 873, simprl 770
rabrestricted class abstraction df-rab 3396 {𝑥𝐴𝜑} Yes rabswap 3404, df-oprab 7350
ralrestricted universal quantification df-ral 3048 𝑥𝐴𝜑 Yes ralnex 3058, ralrnmpo 7485
rclreverse closure No ndmfvrcl 6855, nnarcl 8531
rereal numbers df-r 11013 Yes recn 11093, 0re 11111
relrelation df-rel 5623 Rel 𝐴 Yes brrelex1 5669, relmpoopab 8024
resrestriction df-res 5628 (𝐴𝐵) Yes opelres 5934, f1ores 6777
reurestricted existential uniqueness df-reu 3347 ∃!𝑥𝐴𝜑 Yes nfreud 3392, reurex 3350
rexrestricted existential quantification df-rex 3057 𝑥𝐴𝜑 Yes rexnal 3084, rexrnmpo 7486
rmorestricted "at most one" df-rmo 3346 ∃*𝑥𝐴𝜑 Yes nfrmod 3391, nrexrmo 3365
rnrange df-rn 5627 ran 𝐴 Yes elrng 5831, rncnvcnv 5874
ring(unital) ring df-ring 20151 Ring Yes ringidval 20099, isring 20153, ringgrp 20154
rngnon-unital ring df-rng 20069 Rng Yes isrng 20070, rngabl 20071, rnglz 20081
rotrotation No 3anrot 1099, 3orrot 1091
seliminates need for syllogism (suffix) No ancoms 458
sb(proper) substitution (of a set) df-sb 2068 [𝑦 / 𝑥]𝜑 Yes spsbe 2085, sbimi 2077
sbc(proper) substitution of a class df-sbc 3742 [𝐴 / 𝑥]𝜑 Yes sbc2or 3750, sbcth 3756
scascalar df-sca 17174 (Scalar‘𝐻) Yes resssca 17244, mgpsca 20062
simpsimple, simplification No simpl 482, simp3r3 1284
snsingleton df-sn 4577 {𝐴} Yes eldifsn 4738
spspecialization No spsbe 2085, spei 2394
sssubset df-ss 3919 𝐴𝐵 Yes difss 4086
structstructure df-struct 17055 Struct Yes brstruct 17056, structfn 17064
subsubtract df-sub 11343 (𝐴𝐵) Yes subval 11348, subaddi 11445
supsupremum df-sup 9326 sup(𝐴, 𝐵, < ) Yes fisupcl 9354, supmo 9336
suppsupport (of a function) df-supp 8091 (𝐹 supp 𝑍) Yes ressuppfi 9279, mptsuppd 8117
swapswap (two parts within a theorem) No rabswap 3404, 2reuswap 3705
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4203, cnvsym 6061
symgsymmetric group df-symg 19280 (SymGrp‘𝐴) Yes symghash 19288, pgrpsubgsymg 19319
t times (see "mul"), for all-constant theorems df-mul 11015 (3 · 2) = 6 Yes 3t2e6 12283
th, t theorem No nfth 1802, sbcth 3756, weth 10383, ancomst 464
tptriple df-tp 4581 {𝐴, 𝐵, 𝐶} Yes eltpi 4641, tpeq1 4695
trtransitive No bitrd 279, biantr 805
tru, t true, truth df-tru 1544 Yes bitru 1550, truanfal 1575, biimt 360
ununion df-un 3907 (𝐴𝐵) Yes uneqri 4106, uncom 4108
unitunit (in a ring) df-unit 20274 (Unit‘𝑅) Yes isunit 20289, nzrunit 20437
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1540, vex 3440, velpw 4555, vtoclf 3519
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2390
vtx vertex df-vtx 28974 (Vtx‘𝐺) Yes vtxval0 29015, opvtxov 28981
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1944
wweak (version of a theorem) (suffix) No ax11w 2133, spnfw 1980
wrdword df-word 14418 Word 𝑆 Yes iswrdb 14424, wrdfn 14432, ffz0iswrd 14445
xpcross product (Cartesian product) df-xp 5622 (𝐴 × 𝐵) Yes elxp 5639, opelxpi 5653, xpundi 5685
xreXtended reals df-xr 11147 * Yes ressxr 11153, rexr 11155, 0xr 11156
z integers (from German "Zahlen") df-z 12466 Yes elz 12467, zcn 12470
zn ring of integers mod 𝑁 df-zn 21441 (ℤ/nℤ‘𝑁) Yes znval 21470, zncrng 21479, znhash 21493
zringring of integers df-zring 21382 ring Yes zringbas 21388, zringcrng 21383
0, z slashed zero (empty set) df-nul 4284 Yes n0i 4290, vn0 4295; snnz 4729, prnz 4730

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 𝜑
Assertion
Ref Expression
conventions-labels 𝜑

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator