MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 30429
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 30428 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3060"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 22627: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2660 and stirling 46044.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1835, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3251.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15913. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴𝐵) is defined in df-dif 3965, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴𝐵 has syntax label fragment "ss" because it is defined in df-ss 3979. Most theorem names follow from these fragments, for example, the theorem proving (𝐴𝐵) ⊆ 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4145. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4631), and the pair construct {𝐴, 𝐵} has fragment "pr" ( from df-pr 4633). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴𝐵 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐵 ∖ {𝐶}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4790. An "n" is often used for negation (¬), e.g., nan 830.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers (even though its definition is in df-c 11158) and "re" represents real numbers (Definition df-r 11162). The empty set often uses fragment 0, even though it is defined in df-nul 4339. The syntax construct (𝐴 + 𝐵) usually uses the fragment "add" (which is consistent with df-add 11163), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐵) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12398.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 16182 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 16102) we have value cosval 16155 and closure coscl 16159.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 30431 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1936 versus 19.21 2204. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as 𝑥𝜑 in 19.21 2204). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1911. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1929. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2573 derived from eu6 2571. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (, "iff" , "if and only if"), e.g., sspwb 5459. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2411 (cbval 2400 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3559. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 584), commutes (e.g., biimpac 478)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as 𝑥𝜑
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 476, rexlimiva 3144
ablAbelian group df-abl 19815 Abel Yes ablgrp 19817, zringabl 21479
absabsorption No ressabs 17294
absabsolute value (of a complex number) df-abs 15271 (abs‘𝐴) Yes absval 15273, absneg 15312, abs1 15332
adadding No adantr 480, ad2antlr 727
addadd (see "p") df-add 11163 (𝐴 + 𝐵) Yes addcl 11234, addcom 11444, addass 11239
al"for all" 𝑥𝜑 No alim 1806, alex 1822
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 396 (𝜑𝜓) Yes anor 984, iman 401, imnan 399
antantecedent No adantr 480
assassociative No biass 384, orass 921, mulass 11240
asymasymmetric, antisymmetric No intasym 6137, asymref 6138, posasymb 18376
axaxiom No ax6dgen 2125, ax1cn 11186
bas, base base (set of an extensible structure) df-base 17245 (Base‘𝑆) Yes baseval 17246, ressbas 17279, cnfldbas 21385
b, bibiconditional ("iff", "if and only if") df-bi 207 (𝜑𝜓) Yes impbid 212, sspwb 5459
brbinary relation df-br 5148 𝐴𝑅𝐵 Yes brab1 5195, brun 5198
ccommutes, commuted (suffix) No biimpac 478
ccontraction (suffix) No sylc 65, syl2anc 584
cbvchange bound variable No cbvalivw 2003, cbvrex 3360
cdmcodomain No ffvelcdm 7100, focdmex 7978
clclosure No ifclda 4565, ovrcl 7471, zaddcl 12654
cncomplex numbers df-c 11158 Yes nnsscn 12268, nncn 12271
cnfldfield of complex numbers df-cnfld 21382 fld Yes cnfldbas 21385, cnfldinv 21432
cntzcentralizer df-cntz 19347 (Cntz‘𝑀) Yes cntzfval 19350, dprdfcntz 20049
cnvconverse df-cnv 5696 𝐴 Yes opelcnvg 5893, f1ocnv 6860
cocomposition df-co 5697 (𝐴𝐵) Yes cnvco 5898, fmptco 7148
comcommutative No orcom 870, bicomi 224, eqcomi 2743
concontradiction, contraposition No condan 818, con2d 134
csbclass substitution df-csb 3908 𝐴 / 𝑥𝐵 Yes csbid 3920, csbie2g 3950
cygcyclic group df-cyg 19910 CycGrp Yes iscyg 19911, zringcyg 21497
ddeduction form (suffix) No idd 24, impbid 212
df(alternate) definition (prefix) No dfrel2 6210, dffn2 6738
di, distrdistributive No andi 1009, imdi 389, ordi 1007, difindi 4297, ndmovdistr 7621
difclass difference df-dif 3965 (𝐴𝐵) Yes difss 4145, difindi 4297
divdivision df-div 11918 (𝐴 / 𝐵) Yes divcl 11925, divval 11921, divmul 11922
dmdomain df-dm 5698 dom 𝐴 Yes dmmpt 6261, iswrddm0 14572
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2726 𝐴 = 𝐵 Yes 2p2e4 12398, uneqri 4165, equtr 2017
edgedge df-edg 29079 (Edg‘𝐺) Yes edgopval 29082, usgredgppr 29227
elelement of 𝐴𝐵 Yes eldif 3972, eldifsn 4790, elssuni 4941
enequinumerous df-en 𝐴𝐵 Yes domen 9000, enfi 9224
eu"there exists exactly one" eu6 2571 ∃!𝑥𝜑 Yes euex 2574, euabsn 4730
exexists (i.e. is a set) ∈ V No brrelex1 5741, 0ex 5312
ex, e"there exists (at least one)" df-ex 1776 𝑥𝜑 Yes exim 1830, alex 1822
expexport No expt 177, expcom 413
f"not free in" (suffix) No equs45f 2461, sbf 2268
ffunction df-f 6566 𝐹:𝐴𝐵 Yes fssxp 6763, opelf 6769
falfalse df-fal 1549 Yes bifal 1552, falantru 1571
fifinite intersection df-fi 9448 (fi‘𝐵) Yes fival 9449, inelfi 9455
fi, finfinite df-fin 8987 Fin Yes isfi 9014, snfi 9081, onfin 9264
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 37978) df-field 20748 Field Yes isfld 20756, fldidom 20787
fnfunction with domain df-fn 6565 𝐴 Fn 𝐵 Yes ffn 6736, fndm 6671
frgpfree group df-frgp 19742 (freeGrp‘𝐼) Yes frgpval 19790, frgpadd 19795
fsuppfinitely supported function df-fsupp 9399 𝑅 finSupp 𝑍 Yes isfsupp 9402, fdmfisuppfi 9411, fsuppco 9439
funfunction df-fun 6564 Fun 𝐹 Yes funrel 6584, ffun 6739
fvfunction value df-fv 6570 (𝐹𝐴) Yes fvres 6925, swrdfv 14682
fzfinite set of sequential integers df-fz 13544 (𝑀...𝑁) Yes fzval 13545, eluzfz 13555
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13661, fz0tp 13664
fzohalf-open integer range df-fzo 13691 (𝑀..^𝑁) Yes elfzo 13697, elfzofz 13711
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7758
grgraph No uhgrf 29093, isumgr 29126, usgrres1 29346
grpgroup df-grp 18966 Grp Yes isgrp 18969, tgpgrp 24101
gsumgroup sum df-gsum 17488 (𝐺 Σg 𝐹) Yes gsumval 18702, gsumwrev 19399
hashsize (of a set) df-hash 14366 (♯‘𝐴) Yes hashgval 14368, hashfz1 14381, hashcl 14391
hbhypothesis builder (prefix) No hbxfrbi 1821, hbald 2165, hbequid 38890
hm(monoid, group, ring, ...) homomorphism No ismhm 18810, isghm 19245, isrhm 20494
iinference (suffix) No eleq1i 2829, tcsni 9780
iimplication (suffix) No brwdomi 9605, infeq5i 9673
ididentity No biid 261
iedgindexed edge df-iedg 29030 (iEdg‘𝐺) Yes iedgval0 29071, edgiedgb 29085
idmidempotent No anidm 564, tpidm13 4760
im, impimplication (label often omitted) df-im 15136 (𝐴𝐵) Yes iman 401, imnan 399, impbidd 210
im(group, ring, ...) isomorphism No isgim 19292, rimrcl 20498
imaimage df-ima 5701 (𝐴𝐵) Yes resima 6034, imaundi 6171
impimport No biimpa 476, impcom 407
inintersection df-in 3969 (𝐴𝐵) Yes elin 3978, incom 4216
infinfimum df-inf 9480 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9538, infiso 9545
is...is (something a) ...? No isring 20254
jjoining, disjoining No jc 161, jaoi 857
lleft No olcd 874, simpl 482
mapmapping operation or set exponentiation df-map 8866 (𝐴m 𝐵) Yes mapvalg 8874, elmapex 8886
matmatrix df-mat 22427 (𝑁 Mat 𝑅) Yes matval 22430, matring 22464
mdetdeterminant (of a square matrix) df-mdet 22606 (𝑁 maDet 𝑅) Yes mdetleib 22608, mdetrlin 22623
mgmmagma df-mgm 18665 Magma Yes mgmidmo 18685, mgmlrid 18692, ismgm 18666
mgpmultiplicative group df-mgp 20152 (mulGrp‘𝑅) Yes mgpress 20166, ringmgp 20256
mndmonoid df-mnd 18760 Mnd Yes mndass 18768, mndodcong 19574
mo"there exists at most one" df-mo 2537 ∃*𝑥𝜑 Yes eumo 2575, moim 2541
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7435 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7546, resmpo 7552
mptmodus ponendo tollens No mptnan 1764, mptxor 1765
mptmaps-to notation for a function df-mpt 5231 (𝑥𝐴𝐵) Yes fconstmpt 5750, resmpt 6056
mulmultiplication (see "t") df-mul 11164 (𝐴 · 𝐵) Yes mulcl 11236, divmul 11922, mulcom 11238, mulass 11240
n, notnot ¬ 𝜑 Yes nan 830, notnotr 130
nenot equaldf-ne 𝐴𝐵 Yes exmidne 2947, neeqtrd 3007
nelnot element ofdf-nel 𝐴𝐵 Yes neli 3045, nnel 3053
ne0not equal to zero (see n0) ≠ 0 No negne0d 11615, ine0 11695, gt0ne0 11725
nf "not free in" (prefix) df-nf 1780 𝑥𝜑 Yes nfnd 1855
ngpnormed group df-ngp 24611 NrmGrp Yes isngp 24624, ngptps 24630
nmnorm (on a group or ring) df-nm 24610 (norm‘𝑊) Yes nmval 24617, subgnm 24661
nnpositive integers df-nn 12264 Yes nnsscn 12268, nncn 12271
nn0nonnegative integers df-n0 12524 0 Yes nnnn0 12530, nn0cn 12533
n0not the empty set (see ne0) ≠ ∅ No n0i 4345, vn0 4350, ssn0 4409
OLDold, obsolete (to be removed soon) No 19.43OLD 1880
onordinal number df-on 6389 𝐴 ∈ On Yes elon 6394, 1on 8516 onelon 6410
opordered pair df-op 4637 𝐴, 𝐵 Yes dfopif 4874, opth 5486
oror df-or 848 (𝜑𝜓) Yes orcom 870, anor 984
otordered triple df-ot 4639 𝐴, 𝐵, 𝐶 Yes euotd 5522, fnotovb 7482
ovoperation value df-ov 7433 (𝐴𝐹𝐵) Yes fnotovb 7482, fnovrn 7607
pplus (see "add"), for all-constant theorems df-add 11163 (3 + 2) = 5 Yes 3p2e5 12414
pfxprefix df-pfx 14705 (𝑊 prefix 𝐿) Yes pfxlen 14717, ccatpfx 14735
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8867 (𝐴pm 𝐵) Yes elpmi 8884, pmsspw 8915
prpair df-pr 4633 {𝐴, 𝐵} Yes elpr 4654, prcom 4736, prid1g 4764, prnz 4781
prm, primeprime (number) df-prm 16705 Yes 1nprm 16712, dvdsprime 16720
pssproper subset df-pss 3982 𝐴𝐵 Yes pssss 4107, sspsstri 4114
q rational numbers ("quotients") df-q 12988 Yes elq 12989
rreversed (suffix) No pm4.71r 558, caovdir 7666
rright No orcd 873, simprl 771
rabrestricted class abstraction df-rab 3433 {𝑥𝐴𝜑} Yes rabswap 3442, df-oprab 7434
ralrestricted universal quantification df-ral 3059 𝑥𝐴𝜑 Yes ralnex 3069, ralrnmpo 7571
rclreverse closure No ndmfvrcl 6942, nnarcl 8652
rereal numbers df-r 11162 Yes recn 11242, 0re 11260
relrelation df-rel 5695 Rel 𝐴 Yes brrelex1 5741, relmpoopab 8117
resrestriction df-res 5700 (𝐴𝐵) Yes opelres 6005, f1ores 6862
reurestricted existential uniqueness df-reu 3378 ∃!𝑥𝐴𝜑 Yes nfreud 3429, reurex 3381
rexrestricted existential quantification df-rex 3068 𝑥𝐴𝜑 Yes rexnal 3097, rexrnmpo 7572
rmorestricted "at most one" df-rmo 3377 ∃*𝑥𝐴𝜑 Yes nfrmod 3428, nrexrmo 3398
rnrange df-rn 5699 ran 𝐴 Yes elrng 5904, rncnvcnv 5947
ring(unital) ring df-ring 20252 Ring Yes ringidval 20200, isring 20254, ringgrp 20255
rngnon-unital ring df-rng 20170 Rng Yes isrng 20171, rngabl 20172, rnglz 20182
rotrotation No 3anrot 1099, 3orrot 1091
seliminates need for syllogism (suffix) No ancoms 458
sb(proper) substitution (of a set) df-sb 2062 [𝑦 / 𝑥]𝜑 Yes spsbe 2079, sbimi 2071
sbc(proper) substitution of a class df-sbc 3791 [𝐴 / 𝑥]𝜑 Yes sbc2or 3799, sbcth 3805
scascalar df-sca 17313 (Scalar‘𝐻) Yes resssca 17388, mgpsca 20159
simpsimple, simplification No simpl 482, simp3r3 1282
snsingleton df-sn 4631 {𝐴} Yes eldifsn 4790
spspecialization No spsbe 2079, spei 2396
sssubset df-ss 3979 𝐴𝐵 Yes difss 4145
structstructure df-struct 17180 Struct Yes brstruct 17181, structfn 17189
subsubtract df-sub 11491 (𝐴𝐵) Yes subval 11496, subaddi 11593
supsupremum df-sup 9479 sup(𝐴, 𝐵, < ) Yes fisupcl 9506, supmo 9489
suppsupport (of a function) df-supp 8184 (𝐹 supp 𝑍) Yes ressuppfi 9432, mptsuppd 8210
swapswap (two parts within a theorem) No rabswap 3442, 2reuswap 3754
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4258, cnvsym 6134
symgsymmetric group df-symg 19401 (SymGrp‘𝐴) Yes symghash 19409, pgrpsubgsymg 19441
t times (see "mul"), for all-constant theorems df-mul 11164 (3 · 2) = 6 Yes 3t2e6 12429
th, t theorem No nfth 1797, sbcth 3805, weth 10532, ancomst 464
tptriple df-tp 4635 {𝐴, 𝐵, 𝐶} Yes eltpi 4692, tpeq1 4746
trtransitive No bitrd 279, biantr 806
tru, t true, truth df-tru 1539 Yes bitru 1545, truanfal 1570, biimt 360
ununion df-un 3967 (𝐴𝐵) Yes uneqri 4165, uncom 4167
unitunit (in a ring) df-unit 20374 (Unit‘𝑅) Yes isunit 20389, nzrunit 20540
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1535, vex 3481, velpw 4609, vtoclf 3563
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2392
vtx vertex df-vtx 29029 (Vtx‘𝐺) Yes vtxval0 29070, opvtxov 29036
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1940
wweak (version of a theorem) (suffix) No ax11w 2127, spnfw 1976
wrdword df-word 14549 Word 𝑆 Yes iswrdb 14554, wrdfn 14562, ffz0iswrd 14575
xpcross product (Cartesian product) df-xp 5694 (𝐴 × 𝐵) Yes elxp 5711, opelxpi 5725, xpundi 5756
xreXtended reals df-xr 11296 * Yes ressxr 11302, rexr 11304, 0xr 11305
z integers (from German "Zahlen") df-z 12611 Yes elz 12612, zcn 12615
zn ring of integers mod 𝑁 df-zn 21534 (ℤ/nℤ‘𝑁) Yes znval 21567, zncrng 21580, znhash 21594
zringring of integers df-zring 21475 ring Yes zringbas 21481, zringcrng 21476
0, z slashed zero (empty set) df-nul 4339 Yes n0i 4345, vn0 4350; snnz 4780, prnz 4781

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 𝜑
Assertion
Ref Expression
conventions-labels 𝜑

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator