MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 28666
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 28665 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3073"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 21663: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2664 and stirling 43520.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1842, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3138.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15521. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴𝐵) is defined in df-dif 3886, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴𝐵 has syntax label fragment "ss" because it is defined in df-ss 3900. Most theorem names follow from these fragments, for example, the theorem proving (𝐴𝐵) ⊆ 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4062. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4559), and the pair construct {𝐴, 𝐵} has fragment "pr" ( from df-pr 4561). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴𝐵 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐵 ∖ {𝐶}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4717. An "n" is often used for negation (¬), e.g., nan 826.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers (even though its definition is in df-c 10808) and "re" represents real numbers (Definition df-r 10812). The empty set often uses fragment 0, even though it is defined in df-nul 4254. The syntax construct (𝐴 + 𝐵) usually uses the fragment "add" (which is consistent with df-add 10813), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐵) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12038.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 15787 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 15708) we have value cosval 15760 and closure coscl 15764.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 28668 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1943 versus 19.21 2203. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as 𝑥𝜑 in 19.21 2203). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1918. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1936. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2576 derived from eu6 2574. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (, "iff" , "if and only if"), e.g., sspwb 5359. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2409 (cbval 2398 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3483. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 583), commutes (e.g., biimpac 478)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as 𝑥𝜑
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 476, rexlimiva 3209
ablAbelian group df-abl 19304 Abel Yes ablgrp 19306, zringabl 20586
absabsorption No ressabs 16885
absabsolute value (of a complex number) df-abs 14875 (abs‘𝐴) Yes absval 14877, absneg 14917, abs1 14937
adadding No adantr 480, ad2antlr 723
addadd (see "p") df-add 10813 (𝐴 + 𝐵) Yes addcl 10884, addcom 11091, addass 10889
al"for all" 𝑥𝜑 No alim 1814, alex 1829
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 396 (𝜑𝜓) Yes anor 979, iman 401, imnan 399
antantecedent No adantr 480
assassociative No biass 385, orass 918, mulass 10890
asymasymmetric, antisymmetric No intasym 6009, asymref 6010, posasymb 17952
axaxiom No ax6dgen 2126, ax1cn 10836
bas, base base (set of an extensible structure) df-base 16841 (Base‘𝑆) Yes baseval 16842, ressbas 16873, cnfldbas 20514
b, bibiconditional ("iff", "if and only if") df-bi 206 (𝜑𝜓) Yes impbid 211, sspwb 5359
brbinary relation df-br 5071 𝐴𝑅𝐵 Yes brab1 5118, brun 5121
cbvchange bound variable No cbvalivw 2011, cbvrex 3369
clclosure No ifclda 4491, ovrcl 7296, zaddcl 12290
cncomplex numbers df-c 10808 Yes nnsscn 11908, nncn 11911
cnfldfield of complex numbers df-cnfld 20511 fld Yes cnfldbas 20514, cnfldinv 20541
cntzcentralizer df-cntz 18838 (Cntz‘𝑀) Yes cntzfval 18841, dprdfcntz 19533
cnvconverse df-cnv 5588 𝐴 Yes opelcnvg 5778, f1ocnv 6712
cocomposition df-co 5589 (𝐴𝐵) Yes cnvco 5783, fmptco 6983
comcommutative No orcom 866, bicomi 223, eqcomi 2747
concontradiction, contraposition No condan 814, con2d 134
csbclass substitution df-csb 3829 𝐴 / 𝑥𝐵 Yes csbid 3841, csbie2g 3871
cygcyclic group df-cyg 19393 CycGrp Yes iscyg 19394, zringcyg 20603
ddeduction form (suffix) No idd 24, impbid 211
df(alternate) definition (prefix) No dfrel2 6081, dffn2 6586
di, distrdistributive No andi 1004, imdi 390, ordi 1002, difindi 4212, ndmovdistr 7439
difclass difference df-dif 3886 (𝐴𝐵) Yes difss 4062, difindi 4212
divdivision df-div 11563 (𝐴 / 𝐵) Yes divcl 11569, divval 11565, divmul 11566
dmdomain df-dm 5590 dom 𝐴 Yes dmmpt 6132, iswrddm0 14169
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2730 𝐴 = 𝐵 Yes 2p2e4 12038, uneqri 4081, equtr 2025
edgedge df-edg 27321 (Edg‘𝐺) Yes edgopval 27324, usgredgppr 27466
elelement of 𝐴𝐵 Yes eldif 3893, eldifsn 4717, elssuni 4868
enequinumerous df-en 𝐴𝐵 Yes domen 8706, enfi 8933
eu"there exists exactly one" eu6 2574 ∃!𝑥𝜑 Yes euex 2577, euabsn 4659
exexists (i.e. is a set) ∈ V No brrelex1 5631, 0ex 5226
ex, e"there exists (at least one)" df-ex 1784 𝑥𝜑 Yes exim 1837, alex 1829
expexport No expt 177, expcom 413
f"not free in" (suffix) No equs45f 2459, sbf 2266
ffunction df-f 6422 𝐹:𝐴𝐵 Yes fssxp 6612, opelf 6619
falfalse df-fal 1552 Yes bifal 1555, falantru 1574
fifinite intersection df-fi 9100 (fi‘𝐵) Yes fival 9101, inelfi 9107
fi, finfinite df-fin 8695 Fin Yes isfi 8719, snfi 8788, onfin 8944
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 36077) df-field 19909 Field Yes isfld 19915, fldidom 20489
fnfunction with domain df-fn 6421 𝐴 Fn 𝐵 Yes ffn 6584, fndm 6520
frgpfree group df-frgp 19231 (freeGrp‘𝐼) Yes frgpval 19279, frgpadd 19284
fsuppfinitely supported function df-fsupp 9059 𝑅 finSupp 𝑍 Yes isfsupp 9062, fdmfisuppfi 9067, fsuppco 9091
funfunction df-fun 6420 Fun 𝐹 Yes funrel 6435, ffun 6587
fvfunction value df-fv 6426 (𝐹𝐴) Yes fvres 6775, swrdfv 14289
fzfinite set of sequential integers df-fz 13169 (𝑀...𝑁) Yes fzval 13170, eluzfz 13180
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13283, fz0tp 13286
fzohalf-open integer range df-fzo 13312 (𝑀..^𝑁) Yes elfzo 13318, elfzofz 13331
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7571
grgraph No uhgrf 27335, isumgr 27368, usgrres1 27585
grpgroup df-grp 18495 Grp Yes isgrp 18498, tgpgrp 23137
gsumgroup sum df-gsum 17070 (𝐺 Σg 𝐹) Yes gsumval 18276, gsumwrev 18888
hashsize (of a set) df-hash 13973 (♯‘𝐴) Yes hashgval 13975, hashfz1 13988, hashcl 13999
hbhypothesis builder (prefix) No hbxfrbi 1828, hbald 2170, hbequid 36850
hm(monoid, group, ring) homomorphism No ismhm 18347, isghm 18749, isrhm 19880
iinference (suffix) No eleq1i 2829, tcsni 9432
iimplication (suffix) No brwdomi 9257, infeq5i 9324
ididentity No biid 260
iedgindexed edge df-iedg 27272 (iEdg‘𝐺) Yes iedgval0 27313, edgiedgb 27327
idmidempotent No anidm 564, tpidm13 4689
im, impimplication (label often omitted) df-im 14740 (𝐴𝐵) Yes iman 401, imnan 399, impbidd 209
imaimage df-ima 5593 (𝐴𝐵) Yes resima 5914, imaundi 6042
impimport No biimpa 476, impcom 407
inintersection df-in 3890 (𝐴𝐵) Yes elin 3899, incom 4131
infinfimum df-inf 9132 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9190, infiso 9197
is...is (something a) ...? No isring 19702
jjoining, disjoining No jc 161, jaoi 853
lleft No olcd 870, simpl 482
mapmapping operation or set exponentiation df-map 8575 (𝐴m 𝐵) Yes mapvalg 8583, elmapex 8594
matmatrix df-mat 21465 (𝑁 Mat 𝑅) Yes matval 21468, matring 21500
mdetdeterminant (of a square matrix) df-mdet 21642 (𝑁 maDet 𝑅) Yes mdetleib 21644, mdetrlin 21659
mgmmagma df-mgm 18241 Magma Yes mgmidmo 18259, mgmlrid 18266, ismgm 18242
mgpmultiplicative group df-mgp 19636 (mulGrp‘𝑅) Yes mgpress 19650, ringmgp 19704
mndmonoid df-mnd 18301 Mnd Yes mndass 18309, mndodcong 19065
mo"there exists at most one" df-mo 2540 ∃*𝑥𝜑 Yes eumo 2578, moim 2544
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7260 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7366, resmpo 7372
mptmodus ponendo tollens No mptnan 1772, mptxor 1773
mptmaps-to notation for a function df-mpt 5154 (𝑥𝐴𝐵) Yes fconstmpt 5640, resmpt 5934
mpt2maps-to notation for an operation (deprecated). We are in the process of replacing mpt2 with mpo in labels. df-mpo 7260 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7366, resmpo 7372
mulmultiplication (see "t") df-mul 10814 (𝐴 · 𝐵) Yes mulcl 10886, divmul 11566, mulcom 10888, mulass 10890
n, notnot ¬ 𝜑 Yes nan 826, notnotr 130
nenot equaldf-ne 𝐴𝐵 Yes exmidne 2952, neeqtrd 3012
nelnot element ofdf-nel 𝐴𝐵 Yes neli 3050, nnel 3057
ne0not equal to zero (see n0) ≠ 0 No negne0d 11260, ine0 11340, gt0ne0 11370
nf "not free in" (prefix) No nfnd 1862
ngpnormed group df-ngp 23645 NrmGrp Yes isngp 23658, ngptps 23664
nmnorm (on a group or ring) df-nm 23644 (norm‘𝑊) Yes nmval 23651, subgnm 23695
nnpositive integers df-nn 11904 Yes nnsscn 11908, nncn 11911
nn0nonnegative integers df-n0 12164 0 Yes nnnn0 12170, nn0cn 12173
n0not the empty set (see ne0) ≠ ∅ No n0i 4264, vn0 4269, ssn0 4331
OLDold, obsolete (to be removed soon) No 19.43OLD 1887
onordinal number df-on 6255 𝐴 ∈ On Yes elon 6260, 1on 8274 onelon 6276
opordered pair df-op 4565 𝐴, 𝐵 Yes dfopif 4797, opth 5385
oror df-or 844 (𝜑𝜓) Yes orcom 866, anor 979
otordered triple df-ot 4567 𝐴, 𝐵, 𝐶 Yes euotd 5421, fnotovb 7305
ovoperation value df-ov 7258 (𝐴𝐹𝐵) Yes fnotovb 7305, fnovrn 7425
pplus (see "add"), for all-constant theorems df-add 10813 (3 + 2) = 5 Yes 3p2e5 12054
pfxprefix df-pfx 14312 (𝑊 prefix 𝐿) Yes pfxlen 14324, ccatpfx 14342
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8576 (𝐴pm 𝐵) Yes elpmi 8592, pmsspw 8623
prpair df-pr 4561 {𝐴, 𝐵} Yes elpr 4581, prcom 4665, prid1g 4693, prnz 4710
prm, primeprime (number) df-prm 16305 Yes 1nprm 16312, dvdsprime 16320
pssproper subset df-pss 3902 𝐴𝐵 Yes pssss 4026, sspsstri 4033
q rational numbers ("quotients") df-q 12618 Yes elq 12619
rright No orcd 869, simprl 767
rabrestricted class abstraction df-rab 3072 {𝑥𝐴𝜑} Yes rabswap 3413, df-oprab 7259
ralrestricted universal quantification df-ral 3068 𝑥𝐴𝜑 Yes ralnex 3163, ralrnmpo 7390
rclreverse closure No ndmfvrcl 6787, nnarcl 8409
rereal numbers df-r 10812 Yes recn 10892, 0re 10908
relrelation df-rel 5587 Rel 𝐴 Yes brrelex1 5631, relmpoopab 7905
resrestriction df-res 5592 (𝐴𝐵) Yes opelres 5886, f1ores 6714
reurestricted existential uniqueness df-reu 3070 ∃!𝑥𝐴𝜑 Yes nfreud 3298, reurex 3352
rexrestricted existential quantification df-rex 3069 𝑥𝐴𝜑 Yes rexnal 3165, rexrnmpo 7391
rmorestricted "at most one" df-rmo 3071 ∃*𝑥𝐴𝜑 Yes nfrmod 3299, nrexrmo 3356
rnrange df-rn 5591 ran 𝐴 Yes elrng 5789, rncnvcnv 5832
rng(unital) ring df-ring 19700 Ring Yes ringidval 19654, isring 19702, ringgrp 19703
rotrotation No 3anrot 1098, 3orrot 1090
seliminates need for syllogism (suffix) No ancoms 458
sb(proper) substitution (of a set) df-sb 2069 [𝑦 / 𝑥]𝜑 Yes spsbe 2086, sbimi 2078
sbc(proper) substitution of a class df-sbc 3712 [𝐴 / 𝑥]𝜑 Yes sbc2or 3720, sbcth 3726
scascalar df-sca 16904 (Scalar‘𝐻) Yes resssca 16978, mgpsca 19643
simpsimple, simplification No simpl 482, simp3r3 1281
snsingleton df-sn 4559 {𝐴} Yes eldifsn 4717
spspecialization No spsbe 2086, spei 2394
sssubset df-ss 3900 𝐴𝐵 Yes difss 4062
structstructure df-struct 16776 Struct Yes brstruct 16777, structfn 16785
subsubtract df-sub 11137 (𝐴𝐵) Yes subval 11142, subaddi 11238
supsupremum df-sup 9131 sup(𝐴, 𝐵, < ) Yes fisupcl 9158, supmo 9141
suppsupport (of a function) df-supp 7949 (𝐹 supp 𝑍) Yes ressuppfi 9084, mptsuppd 7974
swapswap (two parts within a theorem) No rabswap 3413, 2reuswap 3676
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4173, cnvsym 6008
symgsymmetric group df-symg 18890 (SymGrp‘𝐴) Yes symghash 18900, pgrpsubgsymg 18932
t times (see "mul"), for all-constant theorems df-mul 10814 (3 · 2) = 6 Yes 3t2e6 12069
th, t theorem No nfth 1805, sbcth 3726, weth 10182, ancomst 464
tptriple df-tp 4563 {𝐴, 𝐵, 𝐶} Yes eltpi 4620, tpeq1 4675
trtransitive No bitrd 278, biantr 802
tru, t true, truth df-tru 1542 Yes bitru 1548, truanfal 1573, biimt 360
ununion df-un 3888 (𝐴𝐵) Yes uneqri 4081, uncom 4083
unitunit (in a ring) df-unit 19799 (Unit‘𝑅) Yes isunit 19814, nzrunit 20451
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1538, vex 3426, velpw 4535, vtoclf 3487
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2390
vtx vertex df-vtx 27271 (Vtx‘𝐺) Yes vtxval0 27312, opvtxov 27278
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1947
wweak (version of a theorem) (suffix) No ax11w 2128, spnfw 1984
wrdword df-word 14146 Word 𝑆 Yes iswrdb 14151, wrdfn 14159, ffz0iswrd 14172
xpcross product (Cartesian product) df-xp 5586 (𝐴 × 𝐵) Yes elxp 5603, opelxpi 5617, xpundi 5646
xreXtended reals df-xr 10944 * Yes ressxr 10950, rexr 10952, 0xr 10953
z integers (from German "Zahlen") df-z 12250 Yes elz 12251, zcn 12254
zn ring of integers mod 𝑁 df-zn 20620 (ℤ/nℤ‘𝑁) Yes znval 20651, zncrng 20664, znhash 20678
zringring of integers df-zring 20583 ring Yes zringbas 20588, zringcrng 20584
0, z slashed zero (empty set) df-nul 4254 Yes n0i 4264, vn0 4269; snnz 4709, prnz 4710

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 𝜑
Assertion
Ref Expression
conventions-labels 𝜑

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator