MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 29643
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 29642 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3063"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 22099: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2658 and stirling 44791.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1841, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3251.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15823. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴 βˆ– 𝐡) is defined in df-dif 3950, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴 βŠ† 𝐡 has syntax label fragment "ss" because it is defined in df-ss 3964. Most theorem names follow from these fragments, for example, the theorem proving (𝐴 βˆ– 𝐡) βŠ† 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4130. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4628), and the pair construct {𝐴, 𝐡} has fragment "pr" ( from df-pr 4630). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴 ∈ 𝐡 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐡 βˆ– {𝐢}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4789. An "n" is often used for negation (Β¬), e.g., nan 828.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers β„‚ (even though its definition is in df-c 11112) and "re" represents real numbers ℝ (Definition df-r 11116). The empty set βˆ… often uses fragment 0, even though it is defined in df-nul 4322. The syntax construct (𝐴 + 𝐡) usually uses the fragment "add" (which is consistent with df-add 11117), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐡) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12343.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 16089 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 16010) we have value cosval 16062 and closure coscl 16066.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 29645 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1942 versus 19.21 2200. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as β„²π‘₯πœ‘ in 19.21 2200). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1917. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1935. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2570 derived from eu6 2568. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (↔, "iff" , "if and only if"), e.g., sspwb 5448. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2408 (cbval 2397 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3541. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 584), commutes (e.g., biimpac 479)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as β„²π‘₯πœ‘
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 477, rexlimiva 3147
ablAbelian group df-abl 19645 Abel Yes ablgrp 19647, zringabl 21013
absabsorption No ressabs 17190
absabsolute value (of a complex number) df-abs 15179 (absβ€˜π΄) Yes absval 15181, absneg 15220, abs1 15240
adadding No adantr 481, ad2antlr 725
addadd (see "p") df-add 11117 (𝐴 + 𝐡) Yes addcl 11188, addcom 11396, addass 11193
al"for all" βˆ€π‘₯πœ‘ No alim 1812, alex 1828
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 397 (πœ‘ ∧ πœ“) Yes anor 981, iman 402, imnan 400
antantecedent No adantr 481
assassociative No biass 385, orass 920, mulass 11194
asymasymmetric, antisymmetric No intasym 6113, asymref 6114, posasymb 18268
axaxiom No ax6dgen 2124, ax1cn 11140
bas, base base (set of an extensible structure) df-base 17141 (Baseβ€˜π‘†) Yes baseval 17142, ressbas 17175, cnfldbas 20940
b, bibiconditional ("iff", "if and only if") df-bi 206 (πœ‘ ↔ πœ“) Yes impbid 211, sspwb 5448
brbinary relation df-br 5148 𝐴𝑅𝐡 Yes brab1 5195, brun 5198
ccommutes, commuted (suffix) No biimpac 479
ccontraction (suffix) No sylc 65, syl2anc 584
cbvchange bound variable No cbvalivw 2010, cbvrex 3359
cdmcodomain No ffvelcdm 7080, focdmex 7938
clclosure No ifclda 4562, ovrcl 7446, zaddcl 12598
cncomplex numbers df-c 11112 β„‚ Yes nnsscn 12213, nncn 12216
cnfldfield of complex numbers df-cnfld 20937 β„‚fld Yes cnfldbas 20940, cnfldinv 20968
cntzcentralizer df-cntz 19175 (Cntzβ€˜π‘€) Yes cntzfval 19178, dprdfcntz 19879
cnvconverse df-cnv 5683 ◑𝐴 Yes opelcnvg 5878, f1ocnv 6842
cocomposition df-co 5684 (𝐴 ∘ 𝐡) Yes cnvco 5883, fmptco 7123
comcommutative No orcom 868, bicomi 223, eqcomi 2741
concontradiction, contraposition No condan 816, con2d 134
csbclass substitution df-csb 3893 ⦋𝐴 / π‘₯⦌𝐡 Yes csbid 3905, csbie2g 3935
cygcyclic group df-cyg 19740 CycGrp Yes iscyg 19741, zringcyg 21030
ddeduction form (suffix) No idd 24, impbid 211
df(alternate) definition (prefix) No dfrel2 6185, dffn2 6716
di, distrdistributive No andi 1006, imdi 390, ordi 1004, difindi 4280, ndmovdistr 7592
difclass difference df-dif 3950 (𝐴 βˆ– 𝐡) Yes difss 4130, difindi 4280
divdivision df-div 11868 (𝐴 / 𝐡) Yes divcl 11874, divval 11870, divmul 11871
dmdomain df-dm 5685 dom 𝐴 Yes dmmpt 6236, iswrddm0 14484
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2724 𝐴 = 𝐡 Yes 2p2e4 12343, uneqri 4150, equtr 2024
edgedge df-edg 28297 (Edgβ€˜πΊ) Yes edgopval 28300, usgredgppr 28442
elelement of 𝐴 ∈ 𝐡 Yes eldif 3957, eldifsn 4789, elssuni 4940
enequinumerous df-en 𝐴 β‰ˆ 𝐡 Yes domen 8953, enfi 9186
eu"there exists exactly one" eu6 2568 βˆƒ!π‘₯πœ‘ Yes euex 2571, euabsn 4729
exexists (i.e. is a set) ∈ V No brrelex1 5727, 0ex 5306
ex, e"there exists (at least one)" df-ex 1782 βˆƒπ‘₯πœ‘ Yes exim 1836, alex 1828
expexport No expt 177, expcom 414
f"not free in" (suffix) No equs45f 2458, sbf 2262
ffunction df-f 6544 𝐹:𝐴⟢𝐡 Yes fssxp 6742, opelf 6749
falfalse df-fal 1554 βŠ₯ Yes bifal 1557, falantru 1576
fifinite intersection df-fi 9402 (fiβ€˜π΅) Yes fival 9403, inelfi 9409
fi, finfinite df-fin 8939 Fin Yes isfi 8968, snfi 9040, onfin 9226
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 36848) df-field 20310 Field Yes isfld 20318, fldidom 20915
fnfunction with domain df-fn 6543 𝐴 Fn 𝐡 Yes ffn 6714, fndm 6649
frgpfree group df-frgp 19572 (freeGrpβ€˜πΌ) Yes frgpval 19620, frgpadd 19625
fsuppfinitely supported function df-fsupp 9358 𝑅 finSupp 𝑍 Yes isfsupp 9361, fdmfisuppfi 9368, fsuppco 9393
funfunction df-fun 6542 Fun 𝐹 Yes funrel 6562, ffun 6717
fvfunction value df-fv 6548 (πΉβ€˜π΄) Yes fvres 6907, swrdfv 14594
fzfinite set of sequential integers df-fz 13481 (𝑀...𝑁) Yes fzval 13482, eluzfz 13492
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13595, fz0tp 13598
fzohalf-open integer range df-fzo 13624 (𝑀..^𝑁) Yes elfzo 13630, elfzofz 13644
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7726
grgraph No uhgrf 28311, isumgr 28344, usgrres1 28561
grpgroup df-grp 18818 Grp Yes isgrp 18821, tgpgrp 23573
gsumgroup sum df-gsum 17384 (𝐺 Ξ£g 𝐹) Yes gsumval 18592, gsumwrev 19227
hashsize (of a set) df-hash 14287 (β™―β€˜π΄) Yes hashgval 14289, hashfz1 14302, hashcl 14312
hbhypothesis builder (prefix) No hbxfrbi 1827, hbald 2168, hbequid 37767
hm(monoid, group, ring) homomorphism No ismhm 18669, isghm 19086, isrhm 20249
iinference (suffix) No eleq1i 2824, tcsni 9734
iimplication (suffix) No brwdomi 9559, infeq5i 9627
ididentity No biid 260
iedgindexed edge df-iedg 28248 (iEdgβ€˜πΊ) Yes iedgval0 28289, edgiedgb 28303
idmidempotent No anidm 565, tpidm13 4759
im, impimplication (label often omitted) df-im 15044 (𝐴 β†’ 𝐡) Yes iman 402, imnan 400, impbidd 209
imaimage df-ima 5688 (𝐴 β€œ 𝐡) Yes resima 6013, imaundi 6146
impimport No biimpa 477, impcom 408
inintersection df-in 3954 (𝐴 ∩ 𝐡) Yes elin 3963, incom 4200
infinfimum df-inf 9434 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9492, infiso 9499
is...is (something a) ...? No isring 20053
jjoining, disjoining No jc 161, jaoi 855
lleft No olcd 872, simpl 483
mapmapping operation or set exponentiation df-map 8818 (𝐴 ↑m 𝐡) Yes mapvalg 8826, elmapex 8838
matmatrix df-mat 21899 (𝑁 Mat 𝑅) Yes matval 21902, matring 21936
mdetdeterminant (of a square matrix) df-mdet 22078 (𝑁 maDet 𝑅) Yes mdetleib 22080, mdetrlin 22095
mgmmagma df-mgm 18557 Magma Yes mgmidmo 18575, mgmlrid 18582, ismgm 18558
mgpmultiplicative group df-mgp 19982 (mulGrpβ€˜π‘…) Yes mgpress 19996, ringmgp 20055
mndmonoid df-mnd 18622 Mnd Yes mndass 18630, mndodcong 19404
mo"there exists at most one" df-mo 2534 βˆƒ*π‘₯πœ‘ Yes eumo 2572, moim 2538
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7410 (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) Yes mpompt 7518, resmpo 7524
mptmodus ponendo tollens No mptnan 1770, mptxor 1771
mptmaps-to notation for a function df-mpt 5231 (π‘₯ ∈ 𝐴 ↦ 𝐡) Yes fconstmpt 5736, resmpt 6035
mpt2maps-to notation for an operation (deprecated). We are in the process of replacing mpt2 with mpo in labels. df-mpo 7410 (π‘₯ ∈ 𝐴, 𝑦 ∈ 𝐡 ↦ 𝐢) Yes mpompt 7518, resmpo 7524
mulmultiplication (see "t") df-mul 11118 (𝐴 Β· 𝐡) Yes mulcl 11190, divmul 11871, mulcom 11192, mulass 11194
n, notnot Β¬ πœ‘ Yes nan 828, notnotr 130
nenot equaldf-ne 𝐴 β‰  𝐡 Yes exmidne 2950, neeqtrd 3010
nelnot element ofdf-nel 𝐴 βˆ‰ 𝐡 Yes neli 3048, nnel 3056
ne0not equal to zero (see n0) β‰  0 No negne0d 11565, ine0 11645, gt0ne0 11675
nf "not free in" (prefix) No nfnd 1861
ngpnormed group df-ngp 24083 NrmGrp Yes isngp 24096, ngptps 24102
nmnorm (on a group or ring) df-nm 24082 (normβ€˜π‘Š) Yes nmval 24089, subgnm 24133
nnpositive integers df-nn 12209 β„• Yes nnsscn 12213, nncn 12216
nn0nonnegative integers df-n0 12469 β„•0 Yes nnnn0 12475, nn0cn 12478
n0not the empty set (see ne0) β‰  βˆ… No n0i 4332, vn0 4337, ssn0 4399
OLDold, obsolete (to be removed soon) No 19.43OLD 1886
onordinal number df-on 6365 𝐴 ∈ On Yes elon 6370, 1on 8474 onelon 6386
opordered pair df-op 4634 ⟨𝐴, 𝐡⟩ Yes dfopif 4869, opth 5475
oror df-or 846 (πœ‘ ∨ πœ“) Yes orcom 868, anor 981
otordered triple df-ot 4636 ⟨𝐴, 𝐡, 𝐢⟩ Yes euotd 5512, fnotovb 7455
ovoperation value df-ov 7408 (𝐴𝐹𝐡) Yes fnotovb 7455, fnovrn 7578
pplus (see "add"), for all-constant theorems df-add 11117 (3 + 2) = 5 Yes 3p2e5 12359
pfxprefix df-pfx 14617 (π‘Š prefix 𝐿) Yes pfxlen 14629, ccatpfx 14647
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8819 (𝐴 ↑pm 𝐡) Yes elpmi 8836, pmsspw 8867
prpair df-pr 4630 {𝐴, 𝐡} Yes elpr 4650, prcom 4735, prid1g 4763, prnz 4780
prm, primeprime (number) df-prm 16605 β„™ Yes 1nprm 16612, dvdsprime 16620
pssproper subset df-pss 3966 𝐴 ⊊ 𝐡 Yes pssss 4094, sspsstri 4101
q rational numbers ("quotients") df-q 12929 β„š Yes elq 12930
rreversed (suffix) No pm4.71r 559, caovdir 7637
rright No orcd 871, simprl 769
rabrestricted class abstraction df-rab 3433 {π‘₯ ∈ 𝐴 ∣ πœ‘} Yes rabswap 3441, df-oprab 7409
ralrestricted universal quantification df-ral 3062 βˆ€π‘₯ ∈ π΄πœ‘ Yes ralnex 3072, ralrnmpo 7543
rclreverse closure No ndmfvrcl 6924, nnarcl 8612
rereal numbers df-r 11116 ℝ Yes recn 11196, 0re 11212
relrelation df-rel 5682 Rel 𝐴 Yes brrelex1 5727, relmpoopab 8076
resrestriction df-res 5687 (𝐴 β†Ύ 𝐡) Yes opelres 5985, f1ores 6844
reurestricted existential uniqueness df-reu 3377 βˆƒ!π‘₯ ∈ π΄πœ‘ Yes nfreud 3429, reurex 3380
rexrestricted existential quantification df-rex 3071 βˆƒπ‘₯ ∈ π΄πœ‘ Yes rexnal 3100, rexrnmpo 7544
rmorestricted "at most one" df-rmo 3376 βˆƒ*π‘₯ ∈ π΄πœ‘ Yes nfrmod 3428, nrexrmo 3397
rnrange df-rn 5686 ran 𝐴 Yes elrng 5889, rncnvcnv 5931
ring(unital) ring df-ring 20051 Ring Yes ringidval 20000, isring 20053, ringgrp 20054
rngnon-unital ring df-rng 46635 Rng Yes isrng 46636, rngabl 46637, rnglz 46650
rotrotation No 3anrot 1100, 3orrot 1092
seliminates need for syllogism (suffix) No ancoms 459
sb(proper) substitution (of a set) df-sb 2068 [𝑦 / π‘₯]πœ‘ Yes spsbe 2085, sbimi 2077
sbc(proper) substitution of a class df-sbc 3777 [𝐴 / π‘₯]πœ‘ Yes sbc2or 3785, sbcth 3791
scascalar df-sca 17209 (Scalarβ€˜π») Yes resssca 17284, mgpsca 19989
simpsimple, simplification No simpl 483, simp3r3 1283
snsingleton df-sn 4628 {𝐴} Yes eldifsn 4789
spspecialization No spsbe 2085, spei 2393
sssubset df-ss 3964 𝐴 βŠ† 𝐡 Yes difss 4130
structstructure df-struct 17076 Struct Yes brstruct 17077, structfn 17085
subsubtract df-sub 11442 (𝐴 βˆ’ 𝐡) Yes subval 11447, subaddi 11543
supsupremum df-sup 9433 sup(𝐴, 𝐡, < ) Yes fisupcl 9460, supmo 9443
suppsupport (of a function) df-supp 8143 (𝐹 supp 𝑍) Yes ressuppfi 9386, mptsuppd 8168
swapswap (two parts within a theorem) No rabswap 3441, 2reuswap 3741
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4241, cnvsym 6110
symgsymmetric group df-symg 19229 (SymGrpβ€˜π΄) Yes symghash 19239, pgrpsubgsymg 19271
t times (see "mul"), for all-constant theorems df-mul 11118 (3 Β· 2) = 6 Yes 3t2e6 12374
th, t theorem No nfth 1803, sbcth 3791, weth 10486, ancomst 465
tptriple df-tp 4632 {𝐴, 𝐡, 𝐢} Yes eltpi 4690, tpeq1 4745
trtransitive No bitrd 278, biantr 804
tru, t true, truth df-tru 1544 ⊀ Yes bitru 1550, truanfal 1575, biimt 360
ununion df-un 3952 (𝐴 βˆͺ 𝐡) Yes uneqri 4150, uncom 4152
unitunit (in a ring) df-unit 20164 (Unitβ€˜π‘…) Yes isunit 20179, nzrunit 20293
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1540, vex 3478, velpw 4606, vtoclf 3547
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2389
vtx vertex df-vtx 28247 (Vtxβ€˜πΊ) Yes vtxval0 28288, opvtxov 28254
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1946
wweak (version of a theorem) (suffix) No ax11w 2126, spnfw 1983
wrdword df-word 14461 Word 𝑆 Yes iswrdb 14466, wrdfn 14474, ffz0iswrd 14487
xpcross product (Cartesian product) df-xp 5681 (𝐴 Γ— 𝐡) Yes elxp 5698, opelxpi 5712, xpundi 5742
xreXtended reals df-xr 11248 ℝ* Yes ressxr 11254, rexr 11256, 0xr 11257
z integers (from German "Zahlen") df-z 12555 β„€ Yes elz 12556, zcn 12559
zn ring of integers mod 𝑁 df-zn 21047 (β„€/nβ„€β€˜π‘) Yes znval 21078, zncrng 21091, znhash 21105
zringring of integers df-zring 21010 β„€ring Yes zringbas 21015, zringcrng 21011
0, z slashed zero (empty set) df-nul 4322 βˆ… Yes n0i 4332, vn0 4337; snnz 4779, prnz 4780

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 πœ‘
Assertion
Ref Expression
conventions-labels πœ‘

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 πœ‘
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator