MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 30328
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 30327 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3053"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 22542: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2662 and stirling 46066.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1839, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3237.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15895. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴𝐵) is defined in df-dif 3929, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴𝐵 has syntax label fragment "ss" because it is defined in df-ss 3943. Most theorem names follow from these fragments, for example, the theorem proving (𝐴𝐵) ⊆ 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4111. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4602), and the pair construct {𝐴, 𝐵} has fragment "pr" ( from df-pr 4604). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴𝐵 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐵 ∖ {𝐶}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4762. An "n" is often used for negation (¬), e.g., nan 829.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers (even though its definition is in df-c 11133) and "re" represents real numbers (Definition df-r 11137). The empty set often uses fragment 0, even though it is defined in df-nul 4309. The syntax construct (𝐴 + 𝐵) usually uses the fragment "add" (which is consistent with df-add 11138), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐵) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12373.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 16166 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 16084) we have value cosval 16139 and closure coscl 16143.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 30330 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1939 versus 19.21 2207. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as 𝑥𝜑 in 19.21 2207). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1914. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1932. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2575 derived from eu6 2573. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (, "iff" , "if and only if"), e.g., sspwb 5424. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2413 (cbval 2402 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3539. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 584), commutes (e.g., biimpac 478)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as 𝑥𝜑
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 476, rexlimiva 3133
ablAbelian group df-abl 19762 Abel Yes ablgrp 19764, zringabl 21410
absabsorption No ressabs 17267
absabsolute value (of a complex number) df-abs 15253 (abs‘𝐴) Yes absval 15255, absneg 15294, abs1 15314
adadding No adantr 480, ad2antlr 727
addadd (see "p") df-add 11138 (𝐴 + 𝐵) Yes addcl 11209, addcom 11419, addass 11214
al"for all" 𝑥𝜑 No alim 1810, alex 1826
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 396 (𝜑𝜓) Yes anor 984, iman 401, imnan 399
antantecedent No adantr 480
assassociative No biass 384, orass 921, mulass 11215
asymasymmetric, antisymmetric No intasym 6104, asymref 6105, posasymb 18329
axaxiom No ax6dgen 2128, ax1cn 11161
bas, base base (set of an extensible structure) df-base 17227 (Base‘𝑆) Yes baseval 17228, ressbas 17255, cnfldbas 21317
b, bibiconditional ("iff", "if and only if") df-bi 207 (𝜑𝜓) Yes impbid 212, sspwb 5424
brbinary relation df-br 5120 𝐴𝑅𝐵 Yes brab1 5167, brun 5170
ccommutes, commuted (suffix) No biimpac 478
ccontraction (suffix) No sylc 65, syl2anc 584
cbvchange bound variable No cbvalivw 2006, cbvrex 3342
cdmcodomain No ffvelcdm 7070, focdmex 7952
clclosure No ifclda 4536, ovrcl 7444, zaddcl 12630
cncomplex numbers df-c 11133 Yes nnsscn 12243, nncn 12246
cnfldfield of complex numbers df-cnfld 21314 fld Yes cnfldbas 21317, cnfldinv 21363
cntzcentralizer df-cntz 19298 (Cntz‘𝑀) Yes cntzfval 19301, dprdfcntz 19996
cnvconverse df-cnv 5662 𝐴 Yes opelcnvg 5860, f1ocnv 6829
cocomposition df-co 5663 (𝐴𝐵) Yes cnvco 5865, fmptco 7118
comcommutative No orcom 870, bicomi 224, eqcomi 2744
concontradiction, contraposition No condan 817, con2d 134
csbclass substitution df-csb 3875 𝐴 / 𝑥𝐵 Yes csbid 3887, csbie2g 3914
cygcyclic group df-cyg 19857 CycGrp Yes iscyg 19858, zringcyg 21428
ddeduction form (suffix) No idd 24, impbid 212
df(alternate) definition (prefix) No dfrel2 6178, dffn2 6707
di, distrdistributive No andi 1009, imdi 389, ordi 1007, difindi 4267, ndmovdistr 7594
difclass difference df-dif 3929 (𝐴𝐵) Yes difss 4111, difindi 4267
divdivision df-div 11893 (𝐴 / 𝐵) Yes divcl 11900, divval 11896, divmul 11897
dmdomain df-dm 5664 dom 𝐴 Yes dmmpt 6229, iswrddm0 14554
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2727 𝐴 = 𝐵 Yes 2p2e4 12373, uneqri 4131, equtr 2020
edgedge df-edg 28973 (Edg‘𝐺) Yes edgopval 28976, usgredgppr 29121
elelement of 𝐴𝐵 Yes eldif 3936, eldifsn 4762, elssuni 4913
enequinumerous df-en 𝐴𝐵 Yes domen 8974, enfi 9199
eu"there exists exactly one" eu6 2573 ∃!𝑥𝜑 Yes euex 2576, euabsn 4702
exexists (i.e. is a set) ∈ V No brrelex1 5707, 0ex 5277
ex, e"there exists (at least one)" df-ex 1780 𝑥𝜑 Yes exim 1834, alex 1826
expexport No expt 177, expcom 413
f"not free in" (suffix) No equs45f 2463, sbf 2271
ffunction df-f 6534 𝐹:𝐴𝐵 Yes fssxp 6732, opelf 6738
falfalse df-fal 1553 Yes bifal 1556, falantru 1575
fifinite intersection df-fi 9421 (fi‘𝐵) Yes fival 9422, inelfi 9428
fi, finfinite df-fin 8961 Fin Yes isfi 8988, snfi 9055, onfin 9237
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 37962) df-field 20690 Field Yes isfld 20698, fldidom 20729
fnfunction with domain df-fn 6533 𝐴 Fn 𝐵 Yes ffn 6705, fndm 6640
frgpfree group df-frgp 19689 (freeGrp‘𝐼) Yes frgpval 19737, frgpadd 19742
fsuppfinitely supported function df-fsupp 9372 𝑅 finSupp 𝑍 Yes isfsupp 9375, fdmfisuppfi 9384, fsuppco 9412
funfunction df-fun 6532 Fun 𝐹 Yes funrel 6552, ffun 6708
fvfunction value df-fv 6538 (𝐹𝐴) Yes fvres 6894, swrdfv 14664
fzfinite set of sequential integers df-fz 13523 (𝑀...𝑁) Yes fzval 13524, eluzfz 13534
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13640, fz0tp 13643
fzohalf-open integer range df-fzo 13670 (𝑀..^𝑁) Yes elfzo 13676, elfzofz 13690
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7732
grgraph No uhgrf 28987, isumgr 29020, usgrres1 29240
grpgroup df-grp 18917 Grp Yes isgrp 18920, tgpgrp 24014
gsumgroup sum df-gsum 17454 (𝐺 Σg 𝐹) Yes gsumval 18653, gsumwrev 19347
hashsize (of a set) df-hash 14347 (♯‘𝐴) Yes hashgval 14349, hashfz1 14362, hashcl 14372
hbhypothesis builder (prefix) No hbxfrbi 1825, hbald 2168, hbequid 38873
hm(monoid, group, ring, ...) homomorphism No ismhm 18761, isghm 19196, isrhm 20436
iinference (suffix) No eleq1i 2825, tcsni 9755
iimplication (suffix) No brwdomi 9580, infeq5i 9648
ididentity No biid 261
iedgindexed edge df-iedg 28924 (iEdg‘𝐺) Yes iedgval0 28965, edgiedgb 28979
idmidempotent No anidm 564, tpidm13 4732
im, impimplication (label often omitted) df-im 15118 (𝐴𝐵) Yes iman 401, imnan 399, impbidd 210
im(group, ring, ...) isomorphism No isgim 19243, rimrcl 20440
imaimage df-ima 5667 (𝐴𝐵) Yes resima 6002, imaundi 6138
impimport No biimpa 476, impcom 407
inintersection df-in 3933 (𝐴𝐵) Yes elin 3942, incom 4184
infinfimum df-inf 9453 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9513, infiso 9520
is...is (something a) ...? No isring 20195
jjoining, disjoining No jc 161, jaoi 857
lleft No olcd 874, simpl 482
mapmapping operation or set exponentiation df-map 8840 (𝐴m 𝐵) Yes mapvalg 8848, elmapex 8860
matmatrix df-mat 22344 (𝑁 Mat 𝑅) Yes matval 22347, matring 22379
mdetdeterminant (of a square matrix) df-mdet 22521 (𝑁 maDet 𝑅) Yes mdetleib 22523, mdetrlin 22538
mgmmagma df-mgm 18616 Magma Yes mgmidmo 18636, mgmlrid 18643, ismgm 18617
mgpmultiplicative group df-mgp 20099 (mulGrp‘𝑅) Yes mgpress 20108, ringmgp 20197
mndmonoid df-mnd 18711 Mnd Yes mndass 18719, mndodcong 19521
mo"there exists at most one" df-mo 2539 ∃*𝑥𝜑 Yes eumo 2577, moim 2543
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7408 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7519, resmpo 7525
mptmodus ponendo tollens No mptnan 1768, mptxor 1769
mptmaps-to notation for a function df-mpt 5202 (𝑥𝐴𝐵) Yes fconstmpt 5716, resmpt 6024
mulmultiplication (see "t") df-mul 11139 (𝐴 · 𝐵) Yes mulcl 11211, divmul 11897, mulcom 11213, mulass 11215
n, notnot ¬ 𝜑 Yes nan 829, notnotr 130
nenot equaldf-ne 𝐴𝐵 Yes exmidne 2942, neeqtrd 3001
nelnot element ofdf-nel 𝐴𝐵 Yes neli 3038, nnel 3046
ne0not equal to zero (see n0) ≠ 0 No negne0d 11590, ine0 11670, gt0ne0 11700
nf "not free in" (prefix) df-nf 1784 𝑥𝜑 Yes nfnd 1858
ngpnormed group df-ngp 24520 NrmGrp Yes isngp 24533, ngptps 24539
nmnorm (on a group or ring) df-nm 24519 (norm‘𝑊) Yes nmval 24526, subgnm 24570
nnpositive integers df-nn 12239 Yes nnsscn 12243, nncn 12246
nn0nonnegative integers df-n0 12500 0 Yes nnnn0 12506, nn0cn 12509
n0not the empty set (see ne0) ≠ ∅ No n0i 4315, vn0 4320, ssn0 4379
OLDold, obsolete (to be removed soon) No 19.43OLD 1883
onordinal number df-on 6356 𝐴 ∈ On Yes elon 6361, 1on 8490 onelon 6377
opordered pair df-op 4608 𝐴, 𝐵 Yes dfopif 4846, opth 5451
oror df-or 848 (𝜑𝜓) Yes orcom 870, anor 984
otordered triple df-ot 4610 𝐴, 𝐵, 𝐶 Yes euotd 5488, fnotovb 7455
ovoperation value df-ov 7406 (𝐴𝐹𝐵) Yes fnotovb 7455, fnovrn 7580
pplus (see "add"), for all-constant theorems df-add 11138 (3 + 2) = 5 Yes 3p2e5 12389
pfxprefix df-pfx 14687 (𝑊 prefix 𝐿) Yes pfxlen 14699, ccatpfx 14717
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8841 (𝐴pm 𝐵) Yes elpmi 8858, pmsspw 8889
prpair df-pr 4604 {𝐴, 𝐵} Yes elpr 4626, prcom 4708, prid1g 4736, prnz 4753
prm, primeprime (number) df-prm 16689 Yes 1nprm 16696, dvdsprime 16704
pssproper subset df-pss 3946 𝐴𝐵 Yes pssss 4073, sspsstri 4080
q rational numbers ("quotients") df-q 12963 Yes elq 12964
rreversed (suffix) No pm4.71r 558, caovdir 7639
rright No orcd 873, simprl 770
rabrestricted class abstraction df-rab 3416 {𝑥𝐴𝜑} Yes rabswap 3425, df-oprab 7407
ralrestricted universal quantification df-ral 3052 𝑥𝐴𝜑 Yes ralnex 3062, ralrnmpo 7544
rclreverse closure No ndmfvrcl 6911, nnarcl 8626
rereal numbers df-r 11137 Yes recn 11217, 0re 11235
relrelation df-rel 5661 Rel 𝐴 Yes brrelex1 5707, relmpoopab 8091
resrestriction df-res 5666 (𝐴𝐵) Yes opelres 5972, f1ores 6831
reurestricted existential uniqueness df-reu 3360 ∃!𝑥𝐴𝜑 Yes nfreud 3412, reurex 3363
rexrestricted existential quantification df-rex 3061 𝑥𝐴𝜑 Yes rexnal 3089, rexrnmpo 7545
rmorestricted "at most one" df-rmo 3359 ∃*𝑥𝐴𝜑 Yes nfrmod 3411, nrexrmo 3380
rnrange df-rn 5665 ran 𝐴 Yes elrng 5871, rncnvcnv 5914
ring(unital) ring df-ring 20193 Ring Yes ringidval 20141, isring 20195, ringgrp 20196
rngnon-unital ring df-rng 20111 Rng Yes isrng 20112, rngabl 20113, rnglz 20123
rotrotation No 3anrot 1099, 3orrot 1091
seliminates need for syllogism (suffix) No ancoms 458
sb(proper) substitution (of a set) df-sb 2065 [𝑦 / 𝑥]𝜑 Yes spsbe 2082, sbimi 2074
sbc(proper) substitution of a class df-sbc 3766 [𝐴 / 𝑥]𝜑 Yes sbc2or 3774, sbcth 3780
scascalar df-sca 17285 (Scalar‘𝐻) Yes resssca 17355, mgpsca 20104
simpsimple, simplification No simpl 482, simp3r3 1284
snsingleton df-sn 4602 {𝐴} Yes eldifsn 4762
spspecialization No spsbe 2082, spei 2398
sssubset df-ss 3943 𝐴𝐵 Yes difss 4111
structstructure df-struct 17164 Struct Yes brstruct 17165, structfn 17173
subsubtract df-sub 11466 (𝐴𝐵) Yes subval 11471, subaddi 11568
supsupremum df-sup 9452 sup(𝐴, 𝐵, < ) Yes fisupcl 9480, supmo 9462
suppsupport (of a function) df-supp 8158 (𝐹 supp 𝑍) Yes ressuppfi 9405, mptsuppd 8184
swapswap (two parts within a theorem) No rabswap 3425, 2reuswap 3729
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4228, cnvsym 6101
symgsymmetric group df-symg 19349 (SymGrp‘𝐴) Yes symghash 19357, pgrpsubgsymg 19388
t times (see "mul"), for all-constant theorems df-mul 11139 (3 · 2) = 6 Yes 3t2e6 12404
th, t theorem No nfth 1801, sbcth 3780, weth 10507, ancomst 464
tptriple df-tp 4606 {𝐴, 𝐵, 𝐶} Yes eltpi 4664, tpeq1 4718
trtransitive No bitrd 279, biantr 805
tru, t true, truth df-tru 1543 Yes bitru 1549, truanfal 1574, biimt 360
ununion df-un 3931 (𝐴𝐵) Yes uneqri 4131, uncom 4133
unitunit (in a ring) df-unit 20316 (Unit‘𝑅) Yes isunit 20331, nzrunit 20482
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1539, vex 3463, velpw 4580, vtoclf 3543
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2394
vtx vertex df-vtx 28923 (Vtx‘𝐺) Yes vtxval0 28964, opvtxov 28930
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1943
wweak (version of a theorem) (suffix) No ax11w 2130, spnfw 1979
wrdword df-word 14530 Word 𝑆 Yes iswrdb 14536, wrdfn 14544, ffz0iswrd 14557
xpcross product (Cartesian product) df-xp 5660 (𝐴 × 𝐵) Yes elxp 5677, opelxpi 5691, xpundi 5723
xreXtended reals df-xr 11271 * Yes ressxr 11277, rexr 11279, 0xr 11280
z integers (from German "Zahlen") df-z 12587 Yes elz 12588, zcn 12591
zn ring of integers mod 𝑁 df-zn 21465 (ℤ/nℤ‘𝑁) Yes znval 21494, zncrng 21503, znhash 21517
zringring of integers df-zring 21406 ring Yes zringbas 21412, zringcrng 21407
0, z slashed zero (empty set) df-nul 4309 Yes n0i 4315, vn0 4320; snnz 4752, prnz 4753

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 𝜑
Assertion
Ref Expression
conventions-labels 𝜑

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator