MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 30363
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 30362 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3046"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 22509: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2656 and stirling 46071.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1839, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3224.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15806. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴𝐵) is defined in df-dif 3908, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴𝐵 has syntax label fragment "ss" because it is defined in df-ss 3922. Most theorem names follow from these fragments, for example, the theorem proving (𝐴𝐵) ⊆ 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4089. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4580), and the pair construct {𝐴, 𝐵} has fragment "pr" ( from df-pr 4582). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴𝐵 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐵 ∖ {𝐶}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4740. An "n" is often used for negation (¬), e.g., nan 829.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers (even though its definition is in df-c 11034) and "re" represents real numbers (Definition df-r 11038). The empty set often uses fragment 0, even though it is defined in df-nul 4287. The syntax construct (𝐴 + 𝐵) usually uses the fragment "add" (which is consistent with df-add 11039), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐵) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12276.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 16077 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 15995) we have value cosval 16050 and closure coscl 16054.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 30365 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1939 versus 19.21 2208. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as 𝑥𝜑 in 19.21 2208). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1914. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1932. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2569 derived from eu6 2567. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (, "iff" , "if and only if"), e.g., sspwb 5396. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2407 (cbval 2396 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3517. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 584), commutes (e.g., biimpac 478)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as 𝑥𝜑
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 476, rexlimiva 3122
ablAbelian group df-abl 19680 Abel Yes ablgrp 19682, zringabl 21376
absabsorption No ressabs 17177
absabsolute value (of a complex number) df-abs 15161 (abs‘𝐴) Yes absval 15163, absneg 15202, abs1 15222
adadding No adantr 480, ad2antlr 727
addadd (see "p") df-add 11039 (𝐴 + 𝐵) Yes addcl 11110, addcom 11320, addass 11115
al"for all" 𝑥𝜑 No alim 1810, alex 1826
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 396 (𝜑𝜓) Yes anor 984, iman 401, imnan 399
antantecedent No adantr 480
assassociative No biass 384, orass 921, mulass 11116
asymasymmetric, antisymmetric No intasym 6068, asymref 6069, posasymb 18243
axaxiom No ax6dgen 2129, ax1cn 11062
bas, base base (set of an extensible structure) df-base 17139 (Base‘𝑆) Yes baseval 17140, ressbas 17165, cnfldbas 21283
b, bibiconditional ("iff", "if and only if") df-bi 207 (𝜑𝜓) Yes impbid 212, sspwb 5396
brbinary relation df-br 5096 𝐴𝑅𝐵 Yes brab1 5143, brun 5146
ccommutes, commuted (suffix) No biimpac 478
ccontraction (suffix) No sylc 65, syl2anc 584
cbvchange bound variable No cbvalivw 2007, cbvrex 3328
cdmcodomain No ffvelcdm 7019, focdmex 7898
clclosure No ifclda 4514, ovrcl 7394, zaddcl 12533
cncomplex numbers df-c 11034 Yes nnsscn 12151, nncn 12154
cnfldfield of complex numbers df-cnfld 21280 fld Yes cnfldbas 21283, cnfldinv 21327
cntzcentralizer df-cntz 19214 (Cntz‘𝑀) Yes cntzfval 19217, dprdfcntz 19914
cnvconverse df-cnv 5631 𝐴 Yes opelcnvg 5827, f1ocnv 6780
cocomposition df-co 5632 (𝐴𝐵) Yes cnvco 5832, fmptco 7067
comcommutative No orcom 870, bicomi 224, eqcomi 2738
concontradiction, contraposition No condan 817, con2d 134
csbclass substitution df-csb 3854 𝐴 / 𝑥𝐵 Yes csbid 3866, csbie2g 3893
cygcyclic group df-cyg 19775 CycGrp Yes iscyg 19776, zringcyg 21394
ddeduction form (suffix) No idd 24, impbid 212
df(alternate) definition (prefix) No dfrel2 6142, dffn2 6658
di, distrdistributive No andi 1009, imdi 389, ordi 1007, difindi 4245, ndmovdistr 7542
difclass difference df-dif 3908 (𝐴𝐵) Yes difss 4089, difindi 4245
divdivision df-div 11796 (𝐴 / 𝐵) Yes divcl 11803, divval 11799, divmul 11800
dmdomain df-dm 5633 dom 𝐴 Yes dmmpt 6193, iswrddm0 14463
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2721 𝐴 = 𝐵 Yes 2p2e4 12276, uneqri 4109, equtr 2021
edgedge df-edg 29011 (Edg‘𝐺) Yes edgopval 29014, usgredgppr 29159
elelement of 𝐴𝐵 Yes eldif 3915, eldifsn 4740, elssuni 4891
enequinumerous df-en 𝐴𝐵 Yes domen 8894, enfi 9111
eu"there exists exactly one" eu6 2567 ∃!𝑥𝜑 Yes euex 2570, euabsn 4680
exexists (i.e. is a set) ∈ V No brrelex1 5676, 0ex 5249
ex, e"there exists (at least one)" df-ex 1780 𝑥𝜑 Yes exim 1834, alex 1826
expexport No expt 177, expcom 413
f"not free in" (suffix) No equs45f 2457, sbf 2271
ffunction df-f 6490 𝐹:𝐴𝐵 Yes fssxp 6683, opelf 6689
falfalse df-fal 1553 Yes bifal 1556, falantru 1575
fifinite intersection df-fi 9320 (fi‘𝐵) Yes fival 9321, inelfi 9327
fi, finfinite df-fin 8883 Fin Yes isfi 8908, snfi 8975, onfin 9139
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 37971) df-field 20635 Field Yes isfld 20643, fldidom 20674
fnfunction with domain df-fn 6489 𝐴 Fn 𝐵 Yes ffn 6656, fndm 6589
frgpfree group df-frgp 19607 (freeGrp‘𝐼) Yes frgpval 19655, frgpadd 19660
fsuppfinitely supported function df-fsupp 9271 𝑅 finSupp 𝑍 Yes isfsupp 9274, fdmfisuppfi 9283, fsuppco 9311
funfunction df-fun 6488 Fun 𝐹 Yes funrel 6503, ffun 6659
fvfunction value df-fv 6494 (𝐹𝐴) Yes fvres 6845, swrdfv 14573
fzfinite set of sequential integers df-fz 13429 (𝑀...𝑁) Yes fzval 13430, eluzfz 13440
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13546, fz0tp 13549
fzohalf-open integer range df-fzo 13576 (𝑀..^𝑁) Yes elfzo 13582, elfzofz 13596
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7680
grgraph No uhgrf 29025, isumgr 29058, usgrres1 29278
grpgroup df-grp 18833 Grp Yes isgrp 18836, tgpgrp 23981
gsumgroup sum df-gsum 17364 (𝐺 Σg 𝐹) Yes gsumval 18569, gsumwrev 19263
hashsize (of a set) df-hash 14256 (♯‘𝐴) Yes hashgval 14258, hashfz1 14271, hashcl 14281
hbhypothesis builder (prefix) No hbxfrbi 1825, hbald 2169, hbequid 38887
hm(monoid, group, ring, ...) homomorphism No ismhm 18677, isghm 19112, isrhm 20381
iinference (suffix) No eleq1i 2819, tcsni 9658
iimplication (suffix) No brwdomi 9479, infeq5i 9551
ididentity No biid 261
iedgindexed edge df-iedg 28962 (iEdg‘𝐺) Yes iedgval0 29003, edgiedgb 29017
idmidempotent No anidm 564, tpidm13 4710
im, impimplication (label often omitted) df-im 15026 (𝐴𝐵) Yes iman 401, imnan 399, impbidd 210
im(group, ring, ...) isomorphism No isgim 19159, rimrcl 20385
imaimage df-ima 5636 (𝐴𝐵) Yes resima 5970, imaundi 6102
impimport No biimpa 476, impcom 407
inintersection df-in 3912 (𝐴𝐵) Yes elin 3921, incom 4162
infinfimum df-inf 9352 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9412, infiso 9419
is...is (something a) ...? No isring 20140
jjoining, disjoining No jc 161, jaoi 857
lleft No olcd 874, simpl 482
mapmapping operation or set exponentiation df-map 8762 (𝐴m 𝐵) Yes mapvalg 8770, elmapex 8782
matmatrix df-mat 22311 (𝑁 Mat 𝑅) Yes matval 22314, matring 22346
mdetdeterminant (of a square matrix) df-mdet 22488 (𝑁 maDet 𝑅) Yes mdetleib 22490, mdetrlin 22505
mgmmagma df-mgm 18532 Magma Yes mgmidmo 18552, mgmlrid 18559, ismgm 18533
mgpmultiplicative group df-mgp 20044 (mulGrp‘𝑅) Yes mgpress 20053, ringmgp 20142
mndmonoid df-mnd 18627 Mnd Yes mndass 18635, mndodcong 19439
mo"there exists at most one" df-mo 2533 ∃*𝑥𝜑 Yes eumo 2571, moim 2537
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7358 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7467, resmpo 7473
mptmodus ponendo tollens No mptnan 1768, mptxor 1769
mptmaps-to notation for a function df-mpt 5177 (𝑥𝐴𝐵) Yes fconstmpt 5685, resmpt 5992
mulmultiplication (see "t") df-mul 11040 (𝐴 · 𝐵) Yes mulcl 11112, divmul 11800, mulcom 11114, mulass 11116
n, notnot ¬ 𝜑 Yes nan 829, notnotr 130
nenot equaldf-ne 𝐴𝐵 Yes exmidne 2935, neeqtrd 2994
nelnot element ofdf-nel 𝐴𝐵 Yes neli 3031, nnel 3039
ne0not equal to zero (see n0) ≠ 0 No negne0d 11491, ine0 11573, gt0ne0 11603
nf "not free in" (prefix) df-nf 1784 𝑥𝜑 Yes nfnd 1858
ngpnormed group df-ngp 24487 NrmGrp Yes isngp 24500, ngptps 24506
nmnorm (on a group or ring) df-nm 24486 (norm‘𝑊) Yes nmval 24493, subgnm 24537
nnpositive integers df-nn 12147 Yes nnsscn 12151, nncn 12154
nn0nonnegative integers df-n0 12403 0 Yes nnnn0 12409, nn0cn 12412
n0not the empty set (see ne0) ≠ ∅ No n0i 4293, vn0 4298, ssn0 4357
OLDold, obsolete (to be removed soon) No 19.43OLD 1883
onordinal number df-on 6315 𝐴 ∈ On Yes elon 6320, 1on 8407 onelon 6336
opordered pair df-op 4586 𝐴, 𝐵 Yes dfopif 4824, opth 5423
oror df-or 848 (𝜑𝜓) Yes orcom 870, anor 984
otordered triple df-ot 4588 𝐴, 𝐵, 𝐶 Yes euotd 5460, fnotovb 7405
ovoperation value df-ov 7356 (𝐴𝐹𝐵) Yes fnotovb 7405, fnovrn 7528
pplus (see "add"), for all-constant theorems df-add 11039 (3 + 2) = 5 Yes 3p2e5 12292
pfxprefix df-pfx 14596 (𝑊 prefix 𝐿) Yes pfxlen 14608, ccatpfx 14625
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8763 (𝐴pm 𝐵) Yes elpmi 8780, pmsspw 8811
prpair df-pr 4582 {𝐴, 𝐵} Yes elpr 4604, prcom 4686, prid1g 4714, prnz 4731
prm, primeprime (number) df-prm 16601 Yes 1nprm 16608, dvdsprime 16616
pssproper subset df-pss 3925 𝐴𝐵 Yes pssss 4051, sspsstri 4058
q rational numbers ("quotients") df-q 12868 Yes elq 12869
rreversed (suffix) No pm4.71r 558, caovdir 7587
rright No orcd 873, simprl 770
rabrestricted class abstraction df-rab 3397 {𝑥𝐴𝜑} Yes rabswap 3406, df-oprab 7357
ralrestricted universal quantification df-ral 3045 𝑥𝐴𝜑 Yes ralnex 3055, ralrnmpo 7492
rclreverse closure No ndmfvrcl 6860, nnarcl 8541
rereal numbers df-r 11038 Yes recn 11118, 0re 11136
relrelation df-rel 5630 Rel 𝐴 Yes brrelex1 5676, relmpoopab 8034
resrestriction df-res 5635 (𝐴𝐵) Yes opelres 5940, f1ores 6782
reurestricted existential uniqueness df-reu 3346 ∃!𝑥𝐴𝜑 Yes nfreud 3393, reurex 3349
rexrestricted existential quantification df-rex 3054 𝑥𝐴𝜑 Yes rexnal 3081, rexrnmpo 7493
rmorestricted "at most one" df-rmo 3345 ∃*𝑥𝐴𝜑 Yes nfrmod 3392, nrexrmo 3366
rnrange df-rn 5634 ran 𝐴 Yes elrng 5838, rncnvcnv 5880
ring(unital) ring df-ring 20138 Ring Yes ringidval 20086, isring 20140, ringgrp 20141
rngnon-unital ring df-rng 20056 Rng Yes isrng 20057, rngabl 20058, rnglz 20068
rotrotation No 3anrot 1099, 3orrot 1091
seliminates need for syllogism (suffix) No ancoms 458
sb(proper) substitution (of a set) df-sb 2066 [𝑦 / 𝑥]𝜑 Yes spsbe 2083, sbimi 2075
sbc(proper) substitution of a class df-sbc 3745 [𝐴 / 𝑥]𝜑 Yes sbc2or 3753, sbcth 3759
scascalar df-sca 17195 (Scalar‘𝐻) Yes resssca 17265, mgpsca 20049
simpsimple, simplification No simpl 482, simp3r3 1284
snsingleton df-sn 4580 {𝐴} Yes eldifsn 4740
spspecialization No spsbe 2083, spei 2392
sssubset df-ss 3922 𝐴𝐵 Yes difss 4089
structstructure df-struct 17076 Struct Yes brstruct 17077, structfn 17085
subsubtract df-sub 11367 (𝐴𝐵) Yes subval 11372, subaddi 11469
supsupremum df-sup 9351 sup(𝐴, 𝐵, < ) Yes fisupcl 9379, supmo 9361
suppsupport (of a function) df-supp 8101 (𝐹 supp 𝑍) Yes ressuppfi 9304, mptsuppd 8127
swapswap (two parts within a theorem) No rabswap 3406, 2reuswap 3708
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4206, cnvsym 6067
symgsymmetric group df-symg 19267 (SymGrp‘𝐴) Yes symghash 19275, pgrpsubgsymg 19306
t times (see "mul"), for all-constant theorems df-mul 11040 (3 · 2) = 6 Yes 3t2e6 12307
th, t theorem No nfth 1801, sbcth 3759, weth 10408, ancomst 464
tptriple df-tp 4584 {𝐴, 𝐵, 𝐶} Yes eltpi 4642, tpeq1 4696
trtransitive No bitrd 279, biantr 805
tru, t true, truth df-tru 1543 Yes bitru 1549, truanfal 1574, biimt 360
ununion df-un 3910 (𝐴𝐵) Yes uneqri 4109, uncom 4111
unitunit (in a ring) df-unit 20261 (Unit‘𝑅) Yes isunit 20276, nzrunit 20427
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1539, vex 3442, velpw 4558, vtoclf 3521
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2388
vtx vertex df-vtx 28961 (Vtx‘𝐺) Yes vtxval0 29002, opvtxov 28968
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1943
wweak (version of a theorem) (suffix) No ax11w 2131, spnfw 1979
wrdword df-word 14439 Word 𝑆 Yes iswrdb 14445, wrdfn 14453, ffz0iswrd 14466
xpcross product (Cartesian product) df-xp 5629 (𝐴 × 𝐵) Yes elxp 5646, opelxpi 5660, xpundi 5692
xreXtended reals df-xr 11172 * Yes ressxr 11178, rexr 11180, 0xr 11181
z integers (from German "Zahlen") df-z 12490 Yes elz 12491, zcn 12494
zn ring of integers mod 𝑁 df-zn 21431 (ℤ/nℤ‘𝑁) Yes znval 21460, zncrng 21469, znhash 21483
zringring of integers df-zring 21372 ring Yes zringbas 21378, zringcrng 21373
0, z slashed zero (empty set) df-nul 4287 Yes n0i 4293, vn0 4298; snnz 4730, prnz 4731

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 𝜑
Assertion
Ref Expression
conventions-labels 𝜑

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator