MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conventions-labels Structured version   Visualization version   GIF version

Theorem conventions-labels 30330
Description:

The following gives conventions used in the Metamath Proof Explorer (MPE, set.mm) regarding labels. For other conventions, see conventions 30329 and links therein.

Every statement has a unique identifying label, which serves the same purpose as an equation number in a book. We use various label naming conventions to provide easy-to-remember hints about their contents. Labels are not a 1-to-1 mapping, because that would create long names that would be difficult to remember and tedious to type. Instead, label names are relatively short while suggesting their purpose. Names are occasionally changed to make them more consistent or as we find better ways to name them. Here are a few of the label naming conventions:

  • Axioms, definitions, and wff syntax. As noted earlier, axioms are named "ax-NAME", proofs of proven axioms are named "axNAME", and definitions are named "df-NAME". Wff syntax declarations have labels beginning with "w" followed by short fragment suggesting its purpose.
  • Hypotheses. Hypotheses have the name of the final axiom or theorem, followed by ".", followed by a unique id (these ids are usually consecutive integers starting with 1, e.g., for rgen 3046"rgen.1 $e |- ( x e. A -> ph ) $." or letters corresponding to the (main) class variable used in the hypothesis, e.g., for mdet0 22493: "mdet0.d $e |- D = ( N maDet R ) $.").
  • Common names. If a theorem has a well-known name, that name (or a short version of it) is sometimes used directly. Examples include barbara 2656 and stirling 46087.
  • Principia Mathematica. Proofs of theorems from Principia Mathematica often use a special naming convention: "pm" followed by its identifier. For example, Theorem *2.27 of [WhiteheadRussell] p. 104 is named pm2.27 42.
  • 19.x series of theorems. Similar to the conventions for the theorems from Principia Mathematica, theorems from Section 19 of [Margaris] p. 90 often use a special naming convention: "19." resp. "r19." (for corresponding restricted quantifier versions) followed by its identifier. For example, Theorem 38 from Section 19 of [Margaris] p. 90 is labeled 19.38 1839, and the restricted quantifier version of Theorem 21 from Section 19 of [Margaris] p. 90 is labeled r19.21 3232.
  • Characters to be used for labels. Although the specification of Metamath allows for dots/periods "." in any label, it is usually used only in labels for hypotheses (see above). Exceptions are the labels of theorems from Principia Mathematica and the 19.x series of theorems from Section 19 of [Margaris] p. 90 (see above) and 0.999... 15847. Furthermore, the underscore "_" should not be used. Finally, only lower case characters should be used (except the special suffixes OLD, ALT, and ALTV mentioned in bullet point "Suffixes"), at least in main set.mm (exceptions are tolerated in mathboxes).
  • Syntax label fragments. Most theorems are named using a concatenation of syntax label fragments (omitting variables) that represent the important part of the theorem's main conclusion. Almost every syntactic construct has a definition labeled "df-NAME", and normally NAME is the syntax label fragment. For example, the class difference construct (𝐴𝐵) is defined in df-dif 3917, and thus its syntax label fragment is "dif". Similarly, the subclass relation 𝐴𝐵 has syntax label fragment "ss" because it is defined in df-ss 3931. Most theorem names follow from these fragments, for example, the theorem proving (𝐴𝐵) ⊆ 𝐴 involves a class difference ("dif") of a subset ("ss"), and thus is labeled difss 4099. There are many other syntax label fragments, e.g., singleton construct {𝐴} has syntax label fragment "sn" (because it is defined in df-sn 4590), and the pair construct {𝐴, 𝐵} has fragment "pr" ( from df-pr 4592). Digits are used to represent themselves. Suffixes (e.g., with numbers) are sometimes used to distinguish multiple theorems that would otherwise produce the same label.
  • Phantom definitions. In some cases there are common label fragments for something that could be in a definition, but for technical reasons is not. The is-element-of (is member of) construct 𝐴𝐵 does not have a df-NAME definition; in this case its syntax label fragment is "el". Thus, because the theorem beginning with (𝐴 ∈ (𝐵 ∖ {𝐶}) uses is-element-of ("el") of a class difference ("dif") of a singleton ("sn"), it is labeled eldifsn 4750. An "n" is often used for negation (¬), e.g., nan 829.
  • Exceptions. Sometimes there is a definition df-NAME but the label fragment is not the NAME part. The definition should note this exception as part of its definition. In addition, the table below attempts to list all such cases and marks them in bold. For example, the label fragment "cn" represents complex numbers (even though its definition is in df-c 11074) and "re" represents real numbers (Definition df-r 11078). The empty set often uses fragment 0, even though it is defined in df-nul 4297. The syntax construct (𝐴 + 𝐵) usually uses the fragment "add" (which is consistent with df-add 11079), but "p" is used as the fragment for constant theorems. Equality (𝐴 = 𝐵) often uses "e" as the fragment. As a result, "two plus two equals four" is labeled 2p2e4 12316.
  • Other markings. In labels we sometimes use "com" for "commutative", "ass" for "associative", "rot" for "rotation", and "di" for "distributive".
  • Focus on the important part of the conclusion. Typically the conclusion is the part the user is most interested in. So, a rough guideline is that a label typically provides a hint about only the conclusion; a label rarely says anything about the hypotheses or antecedents. If there are multiple theorems with the same conclusion but different hypotheses/antecedents, then the labels will need to differ; those label differences should emphasize what is different. There is no need to always fully describe the conclusion; just identify the important part. For example, cos0 16118 is the theorem that provides the value for the cosine of 0; we would need to look at the theorem itself to see what that value is. The label "cos0" is concise and we use it instead of "cos0eq1". There is no need to add the "eq1", because there will never be a case where we have to disambiguate between different values produced by the cosine of zero, and we generally prefer shorter labels if they are unambiguous.
  • Closures and values. As noted above, if a function df-NAME is defined, there is typically a proof of its value labeled "NAMEval" and of its closure labeled "NAMEcl". E.g., for cosine (df-cos 16036) we have value cosval 16091 and closure coscl 16095.
  • Special cases. Sometimes, syntax and related markings are insufficient to distinguish different theorems. For example, there are over a hundred different implication-only theorems. They are grouped in a more ad-hoc way that attempts to make their distinctions clearer. These often use abbreviations such as "mp" for "modus ponens", "syl" for syllogism, and "id" for "identity". It is especially hard to give good names in the propositional calculus section because there are so few primitives. However, in most cases this is not a serious problem. There are a few very common theorems like ax-mp 5 and syl 17 that you will have no trouble remembering, a few theorem series like syl*anc and simp* that you can use parametrically, and a few other useful glue things for destructuring 'and's and 'or's (see natded 30332 for a list), and that is about all you need for most things. As for the rest, you can just assume that if it involves at most three connectives, then it is probably already proved in set.mm, and searching for it will give you the label.
  • Suffixes. Suffixes are used to indicate the form of a theorem (inference, deduction, or closed form, see above). Additionally, we sometimes suffix with "v" the label of a theorem adding a disjoint variable condition, as in 19.21v 1939 versus 19.21 2208. This often permits to prove the result using fewer axioms, and/or to eliminate a nonfreeness hypothesis (such as 𝑥𝜑 in 19.21 2208). If no constraint is put on axiom use, then the v-version can be proved from the original theorem using nfv 1914. If two (resp. three) such disjoint variable conditions are added, then the suffix "vv" (resp. "vvv") is used, e.g., exlimivv 1932. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the disjoint variable condition; e.g., euf 2569 derived from eu6 2567. The "f" stands for "not free in" which is less restrictive than "does not occur in." The suffix "b" often means "biconditional" (, "iff" , "if and only if"), e.g., sspwb 5409. We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. A theorem label is suffixed with "ALT" if it provides an alternate less-preferred proof of a theorem (e.g., the proof is clearer but uses more axioms than the preferred version). The "ALT" may be further suffixed with a number if there is more than one alternate theorem. Furthermore, a theorem label is suffixed with "OLD" if there is a new version of it and the OLD version is obsolete (and will be removed within one year). Finally, it should be mentioned that suffixes can be combined, for example in cbvaldva 2407 (cbval 2396 in deduction form "d" with a not free variable replaced by a disjoint variable condition "v" with a conjunction as antecedent "a"). As a general rule, the suffixes for the theorem forms ("i", "d" or "g") should be the first of multiple suffixes, as for example in vtocldf 3526. Here is a non-exhaustive list of common suffixes:
    • a : theorem having a conjunction as antecedent
    • b : theorem expressing a logical equivalence
    • c : contraction (e.g., sylc 65, syl2anc 584), commutes (e.g., biimpac 478)
    • d : theorem in deduction form
    • f : theorem with a hypothesis such as 𝑥𝜑
    • g : theorem in closed form having an "is a set" antecedent
    • i : theorem in inference form
    • l : theorem concerning something at the left
    • r : theorem concerning something at the right
    • r : theorem with something reversed (e.g., a biconditional)
    • s : inference that manipulates an antecedent ("s" refers to an application of syl 17 that is eliminated)
    • t : theorem in closed form (not having an "is a set" antecedent)
    • v : theorem with one (main) disjoint variable condition
    • vv : theorem with two (main) disjoint variable conditions
    • w : weak(er) form of a theorem
    • ALT : alternate proof of a theorem
    • ALTV : alternate version of a theorem or definition (mathbox only)
    • OLD : old/obsolete version of a theorem (or proof) or definition
  • Reuse. When creating a new theorem or axiom, try to reuse abbreviations used elsewhere. A comment should explain the first use of an abbreviation.

The following table shows some commonly used abbreviations in labels, in alphabetical order. For each abbreviation we provide a mnenomic, the source theorem or the assumption defining it, an expression showing what it looks like, whether or not it is a "syntax fragment" (an abbreviation that indicates a particular kind of syntax), and hyperlinks to label examples that use the abbreviation. The abbreviation is bolded if there is a df-NAME definition but the label fragment is not NAME. This is not a complete list of abbreviations, though we do want this to eventually be a complete list of exceptions.

AbbreviationMnenomicSource ExpressionSyntax?Example(s)
aand (suffix) No biimpa 476, rexlimiva 3126
ablAbelian group df-abl 19713 Abel Yes ablgrp 19715, zringabl 21361
absabsorption No ressabs 17218
absabsolute value (of a complex number) df-abs 15202 (abs‘𝐴) Yes absval 15204, absneg 15243, abs1 15263
adadding No adantr 480, ad2antlr 727
addadd (see "p") df-add 11079 (𝐴 + 𝐵) Yes addcl 11150, addcom 11360, addass 11155
al"for all" 𝑥𝜑 No alim 1810, alex 1826
ALTalternative/less preferred (suffix) No idALT 23
anand df-an 396 (𝜑𝜓) Yes anor 984, iman 401, imnan 399
antantecedent No adantr 480
assassociative No biass 384, orass 921, mulass 11156
asymasymmetric, antisymmetric No intasym 6088, asymref 6089, posasymb 18280
axaxiom No ax6dgen 2129, ax1cn 11102
bas, base base (set of an extensible structure) df-base 17180 (Base‘𝑆) Yes baseval 17181, ressbas 17206, cnfldbas 21268
b, bibiconditional ("iff", "if and only if") df-bi 207 (𝜑𝜓) Yes impbid 212, sspwb 5409
brbinary relation df-br 5108 𝐴𝑅𝐵 Yes brab1 5155, brun 5158
ccommutes, commuted (suffix) No biimpac 478
ccontraction (suffix) No sylc 65, syl2anc 584
cbvchange bound variable No cbvalivw 2007, cbvrex 3337
cdmcodomain No ffvelcdm 7053, focdmex 7934
clclosure No ifclda 4524, ovrcl 7428, zaddcl 12573
cncomplex numbers df-c 11074 Yes nnsscn 12191, nncn 12194
cnfldfield of complex numbers df-cnfld 21265 fld Yes cnfldbas 21268, cnfldinv 21314
cntzcentralizer df-cntz 19249 (Cntz‘𝑀) Yes cntzfval 19252, dprdfcntz 19947
cnvconverse df-cnv 5646 𝐴 Yes opelcnvg 5844, f1ocnv 6812
cocomposition df-co 5647 (𝐴𝐵) Yes cnvco 5849, fmptco 7101
comcommutative No orcom 870, bicomi 224, eqcomi 2738
concontradiction, contraposition No condan 817, con2d 134
csbclass substitution df-csb 3863 𝐴 / 𝑥𝐵 Yes csbid 3875, csbie2g 3902
cygcyclic group df-cyg 19808 CycGrp Yes iscyg 19809, zringcyg 21379
ddeduction form (suffix) No idd 24, impbid 212
df(alternate) definition (prefix) No dfrel2 6162, dffn2 6690
di, distrdistributive No andi 1009, imdi 389, ordi 1007, difindi 4255, ndmovdistr 7578
difclass difference df-dif 3917 (𝐴𝐵) Yes difss 4099, difindi 4255
divdivision df-div 11836 (𝐴 / 𝐵) Yes divcl 11843, divval 11839, divmul 11840
dmdomain df-dm 5648 dom 𝐴 Yes dmmpt 6213, iswrddm0 14503
e, eq, equequals (equ for setvars, eq for classes) df-cleq 2721 𝐴 = 𝐵 Yes 2p2e4 12316, uneqri 4119, equtr 2021
edgedge df-edg 28975 (Edg‘𝐺) Yes edgopval 28978, usgredgppr 29123
elelement of 𝐴𝐵 Yes eldif 3924, eldifsn 4750, elssuni 4901
enequinumerous df-en 𝐴𝐵 Yes domen 8933, enfi 9151
eu"there exists exactly one" eu6 2567 ∃!𝑥𝜑 Yes euex 2570, euabsn 4690
exexists (i.e. is a set) ∈ V No brrelex1 5691, 0ex 5262
ex, e"there exists (at least one)" df-ex 1780 𝑥𝜑 Yes exim 1834, alex 1826
expexport No expt 177, expcom 413
f"not free in" (suffix) No equs45f 2457, sbf 2271
ffunction df-f 6515 𝐹:𝐴𝐵 Yes fssxp 6715, opelf 6721
falfalse df-fal 1553 Yes bifal 1556, falantru 1575
fifinite intersection df-fi 9362 (fi‘𝐵) Yes fival 9363, inelfi 9369
fi, finfinite df-fin 8922 Fin Yes isfi 8947, snfi 9014, onfin 9179
fldfield (Note: there is an alternative definition Fld of a field, see df-fld 37986) df-field 20641 Field Yes isfld 20649, fldidom 20680
fnfunction with domain df-fn 6514 𝐴 Fn 𝐵 Yes ffn 6688, fndm 6621
frgpfree group df-frgp 19640 (freeGrp‘𝐼) Yes frgpval 19688, frgpadd 19693
fsuppfinitely supported function df-fsupp 9313 𝑅 finSupp 𝑍 Yes isfsupp 9316, fdmfisuppfi 9325, fsuppco 9353
funfunction df-fun 6513 Fun 𝐹 Yes funrel 6533, ffun 6691
fvfunction value df-fv 6519 (𝐹𝐴) Yes fvres 6877, swrdfv 14613
fzfinite set of sequential integers df-fz 13469 (𝑀...𝑁) Yes fzval 13470, eluzfz 13480
fz0finite set of sequential nonnegative integers (0...𝑁) Yes nn0fz0 13586, fz0tp 13589
fzohalf-open integer range df-fzo 13616 (𝑀..^𝑁) Yes elfzo 13622, elfzofz 13636
gmore general (suffix); eliminates "is a set" hypotheses No uniexg 7716
grgraph No uhgrf 28989, isumgr 29022, usgrres1 29242
grpgroup df-grp 18868 Grp Yes isgrp 18871, tgpgrp 23965
gsumgroup sum df-gsum 17405 (𝐺 Σg 𝐹) Yes gsumval 18604, gsumwrev 19298
hashsize (of a set) df-hash 14296 (♯‘𝐴) Yes hashgval 14298, hashfz1 14311, hashcl 14321
hbhypothesis builder (prefix) No hbxfrbi 1825, hbald 2169, hbequid 38902
hm(monoid, group, ring, ...) homomorphism No ismhm 18712, isghm 19147, isrhm 20387
iinference (suffix) No eleq1i 2819, tcsni 9696
iimplication (suffix) No brwdomi 9521, infeq5i 9589
ididentity No biid 261
iedgindexed edge df-iedg 28926 (iEdg‘𝐺) Yes iedgval0 28967, edgiedgb 28981
idmidempotent No anidm 564, tpidm13 4720
im, impimplication (label often omitted) df-im 15067 (𝐴𝐵) Yes iman 401, imnan 399, impbidd 210
im(group, ring, ...) isomorphism No isgim 19194, rimrcl 20391
imaimage df-ima 5651 (𝐴𝐵) Yes resima 5986, imaundi 6122
impimport No biimpa 476, impcom 407
inintersection df-in 3921 (𝐴𝐵) Yes elin 3930, incom 4172
infinfimum df-inf 9394 inf(ℝ+, ℝ*, < ) Yes fiinfcl 9454, infiso 9461
is...is (something a) ...? No isring 20146
jjoining, disjoining No jc 161, jaoi 857
lleft No olcd 874, simpl 482
mapmapping operation or set exponentiation df-map 8801 (𝐴m 𝐵) Yes mapvalg 8809, elmapex 8821
matmatrix df-mat 22295 (𝑁 Mat 𝑅) Yes matval 22298, matring 22330
mdetdeterminant (of a square matrix) df-mdet 22472 (𝑁 maDet 𝑅) Yes mdetleib 22474, mdetrlin 22489
mgmmagma df-mgm 18567 Magma Yes mgmidmo 18587, mgmlrid 18594, ismgm 18568
mgpmultiplicative group df-mgp 20050 (mulGrp‘𝑅) Yes mgpress 20059, ringmgp 20148
mndmonoid df-mnd 18662 Mnd Yes mndass 18670, mndodcong 19472
mo"there exists at most one" df-mo 2533 ∃*𝑥𝜑 Yes eumo 2571, moim 2537
mpmodus ponens ax-mp 5 No mpd 15, mpi 20
mpomaps-to notation for an operation df-mpo 7392 (𝑥𝐴, 𝑦𝐵𝐶) Yes mpompt 7503, resmpo 7509
mptmodus ponendo tollens No mptnan 1768, mptxor 1769
mptmaps-to notation for a function df-mpt 5189 (𝑥𝐴𝐵) Yes fconstmpt 5700, resmpt 6008
mulmultiplication (see "t") df-mul 11080 (𝐴 · 𝐵) Yes mulcl 11152, divmul 11840, mulcom 11154, mulass 11156
n, notnot ¬ 𝜑 Yes nan 829, notnotr 130
nenot equaldf-ne 𝐴𝐵 Yes exmidne 2935, neeqtrd 2994
nelnot element ofdf-nel 𝐴𝐵 Yes neli 3031, nnel 3039
ne0not equal to zero (see n0) ≠ 0 No negne0d 11531, ine0 11613, gt0ne0 11643
nf "not free in" (prefix) df-nf 1784 𝑥𝜑 Yes nfnd 1858
ngpnormed group df-ngp 24471 NrmGrp Yes isngp 24484, ngptps 24490
nmnorm (on a group or ring) df-nm 24470 (norm‘𝑊) Yes nmval 24477, subgnm 24521
nnpositive integers df-nn 12187 Yes nnsscn 12191, nncn 12194
nn0nonnegative integers df-n0 12443 0 Yes nnnn0 12449, nn0cn 12452
n0not the empty set (see ne0) ≠ ∅ No n0i 4303, vn0 4308, ssn0 4367
OLDold, obsolete (to be removed soon) No 19.43OLD 1883
onordinal number df-on 6336 𝐴 ∈ On Yes elon 6341, 1on 8446 onelon 6357
opordered pair df-op 4596 𝐴, 𝐵 Yes dfopif 4834, opth 5436
oror df-or 848 (𝜑𝜓) Yes orcom 870, anor 984
otordered triple df-ot 4598 𝐴, 𝐵, 𝐶 Yes euotd 5473, fnotovb 7439
ovoperation value df-ov 7390 (𝐴𝐹𝐵) Yes fnotovb 7439, fnovrn 7564
pplus (see "add"), for all-constant theorems df-add 11079 (3 + 2) = 5 Yes 3p2e5 12332
pfxprefix df-pfx 14636 (𝑊 prefix 𝐿) Yes pfxlen 14648, ccatpfx 14666
pmPrincipia Mathematica No pm2.27 42
pmpartial mapping (operation) df-pm 8802 (𝐴pm 𝐵) Yes elpmi 8819, pmsspw 8850
prpair df-pr 4592 {𝐴, 𝐵} Yes elpr 4614, prcom 4696, prid1g 4724, prnz 4741
prm, primeprime (number) df-prm 16642 Yes 1nprm 16649, dvdsprime 16657
pssproper subset df-pss 3934 𝐴𝐵 Yes pssss 4061, sspsstri 4068
q rational numbers ("quotients") df-q 12908 Yes elq 12909
rreversed (suffix) No pm4.71r 558, caovdir 7623
rright No orcd 873, simprl 770
rabrestricted class abstraction df-rab 3406 {𝑥𝐴𝜑} Yes rabswap 3415, df-oprab 7391
ralrestricted universal quantification df-ral 3045 𝑥𝐴𝜑 Yes ralnex 3055, ralrnmpo 7528
rclreverse closure No ndmfvrcl 6894, nnarcl 8580
rereal numbers df-r 11078 Yes recn 11158, 0re 11176
relrelation df-rel 5645 Rel 𝐴 Yes brrelex1 5691, relmpoopab 8073
resrestriction df-res 5650 (𝐴𝐵) Yes opelres 5956, f1ores 6814
reurestricted existential uniqueness df-reu 3355 ∃!𝑥𝐴𝜑 Yes nfreud 3402, reurex 3358
rexrestricted existential quantification df-rex 3054 𝑥𝐴𝜑 Yes rexnal 3082, rexrnmpo 7529
rmorestricted "at most one" df-rmo 3354 ∃*𝑥𝐴𝜑 Yes nfrmod 3401, nrexrmo 3375
rnrange df-rn 5649 ran 𝐴 Yes elrng 5855, rncnvcnv 5898
ring(unital) ring df-ring 20144 Ring Yes ringidval 20092, isring 20146, ringgrp 20147
rngnon-unital ring df-rng 20062 Rng Yes isrng 20063, rngabl 20064, rnglz 20074
rotrotation No 3anrot 1099, 3orrot 1091
seliminates need for syllogism (suffix) No ancoms 458
sb(proper) substitution (of a set) df-sb 2066 [𝑦 / 𝑥]𝜑 Yes spsbe 2083, sbimi 2075
sbc(proper) substitution of a class df-sbc 3754 [𝐴 / 𝑥]𝜑 Yes sbc2or 3762, sbcth 3768
scascalar df-sca 17236 (Scalar‘𝐻) Yes resssca 17306, mgpsca 20055
simpsimple, simplification No simpl 482, simp3r3 1284
snsingleton df-sn 4590 {𝐴} Yes eldifsn 4750
spspecialization No spsbe 2083, spei 2392
sssubset df-ss 3931 𝐴𝐵 Yes difss 4099
structstructure df-struct 17117 Struct Yes brstruct 17118, structfn 17126
subsubtract df-sub 11407 (𝐴𝐵) Yes subval 11412, subaddi 11509
supsupremum df-sup 9393 sup(𝐴, 𝐵, < ) Yes fisupcl 9421, supmo 9403
suppsupport (of a function) df-supp 8140 (𝐹 supp 𝑍) Yes ressuppfi 9346, mptsuppd 8166
swapswap (two parts within a theorem) No rabswap 3415, 2reuswap 3717
sylsyllogism syl 17 No 3syl 18
symsymmetric No df-symdif 4216, cnvsym 6085
symgsymmetric group df-symg 19300 (SymGrp‘𝐴) Yes symghash 19308, pgrpsubgsymg 19339
t times (see "mul"), for all-constant theorems df-mul 11080 (3 · 2) = 6 Yes 3t2e6 12347
th, t theorem No nfth 1801, sbcth 3768, weth 10448, ancomst 464
tptriple df-tp 4594 {𝐴, 𝐵, 𝐶} Yes eltpi 4652, tpeq1 4706
trtransitive No bitrd 279, biantr 805
tru, t true, truth df-tru 1543 Yes bitru 1549, truanfal 1574, biimt 360
ununion df-un 3919 (𝐴𝐵) Yes uneqri 4119, uncom 4121
unitunit (in a ring) df-unit 20267 (Unit‘𝑅) Yes isunit 20282, nzrunit 20433
v setvar (especially for specializations of theorems when a class is replaced by a setvar variable) x Yes cv 1539, vex 3451, velpw 4568, vtoclf 3530
v disjoint variable condition used in place of nonfreeness hypothesis (suffix) No spimv 2388
vtx vertex df-vtx 28925 (Vtx‘𝐺) Yes vtxval0 28966, opvtxov 28932
vv two disjoint variable conditions used in place of nonfreeness hypotheses (suffix) No 19.23vv 1943
wweak (version of a theorem) (suffix) No ax11w 2131, spnfw 1979
wrdword df-word 14479 Word 𝑆 Yes iswrdb 14485, wrdfn 14493, ffz0iswrd 14506
xpcross product (Cartesian product) df-xp 5644 (𝐴 × 𝐵) Yes elxp 5661, opelxpi 5675, xpundi 5707
xreXtended reals df-xr 11212 * Yes ressxr 11218, rexr 11220, 0xr 11221
z integers (from German "Zahlen") df-z 12530 Yes elz 12531, zcn 12534
zn ring of integers mod 𝑁 df-zn 21416 (ℤ/nℤ‘𝑁) Yes znval 21445, zncrng 21454, znhash 21468
zringring of integers df-zring 21357 ring Yes zringbas 21363, zringcrng 21358
0, z slashed zero (empty set) df-nul 4297 Yes n0i 4303, vn0 4308; snnz 4740, prnz 4741

(Contributed by the Metamath team, 27-Dec-2016.) Date of last revision. (Revised by the Metamath team, 22-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)

Hypothesis
Ref Expression
conventions-labels.1 𝜑
Assertion
Ref Expression
conventions-labels 𝜑

Proof of Theorem conventions-labels
StepHypRef Expression
1 conventions-labels.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator