Proof of Theorem 2pm13.193
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 766 |
. . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → 𝑥 = 𝑢) |
| 2 | | simplr 768 |
. . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → 𝑦 = 𝑣) |
| 3 | | simpr 484 |
. . . . 5
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) |
| 4 | | sbequ2 2250 |
. . . . 5
⊢ (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑣 / 𝑦]𝜑)) |
| 5 | 1, 3, 4 | sylc 65 |
. . . 4
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → [𝑣 / 𝑦]𝜑) |
| 6 | | sbequ2 2250 |
. . . 4
⊢ (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑 → 𝜑)) |
| 7 | 2, 5, 6 | sylc 65 |
. . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → 𝜑) |
| 8 | 1, 2, 7 | jca31 514 |
. 2
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
| 9 | | simpll 766 |
. . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → 𝑥 = 𝑢) |
| 10 | | simplr 768 |
. . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → 𝑦 = 𝑣) |
| 11 | | simpr 484 |
. . . . 5
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → 𝜑) |
| 12 | | sbequ1 2249 |
. . . . 5
⊢ (𝑦 = 𝑣 → (𝜑 → [𝑣 / 𝑦]𝜑)) |
| 13 | 10, 11, 12 | sylc 65 |
. . . 4
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → [𝑣 / 𝑦]𝜑) |
| 14 | | sbequ1 2249 |
. . . 4
⊢ (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
| 15 | 9, 13, 14 | sylc 65 |
. . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) |
| 16 | 9, 10, 15 | jca31 514 |
. 2
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
| 17 | 8, 16 | impbii 209 |
1
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |