Proof of Theorem 2pm13.193
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpll 767 | . . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → 𝑥 = 𝑢) | 
| 2 |  | simplr 769 | . . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → 𝑦 = 𝑣) | 
| 3 |  | simpr 484 | . . . . 5
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) | 
| 4 |  | sbequ2 2249 | . . . . 5
⊢ (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑣 / 𝑦]𝜑)) | 
| 5 | 1, 3, 4 | sylc 65 | . . . 4
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → [𝑣 / 𝑦]𝜑) | 
| 6 |  | sbequ2 2249 | . . . 4
⊢ (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑 → 𝜑)) | 
| 7 | 2, 5, 6 | sylc 65 | . . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → 𝜑) | 
| 8 | 1, 2, 7 | jca31 514 | . 2
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) | 
| 9 |  | simpll 767 | . . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → 𝑥 = 𝑢) | 
| 10 |  | simplr 769 | . . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → 𝑦 = 𝑣) | 
| 11 |  | simpr 484 | . . . . 5
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → 𝜑) | 
| 12 |  | sbequ1 2248 | . . . . 5
⊢ (𝑦 = 𝑣 → (𝜑 → [𝑣 / 𝑦]𝜑)) | 
| 13 | 10, 11, 12 | sylc 65 | . . . 4
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → [𝑣 / 𝑦]𝜑) | 
| 14 |  | sbequ1 2248 | . . . 4
⊢ (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) | 
| 15 | 9, 13, 14 | sylc 65 | . . 3
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) | 
| 16 | 9, 10, 15 | jca31 514 | . 2
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) | 
| 17 | 8, 16 | impbii 209 | 1
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |