Proof of Theorem 2sb5nd
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ax6e2ndeq 44579 | . 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) | 
| 2 |  | anabs5 663 | . . . 4
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) | 
| 3 |  | 2pm13.193 44572 | . . . . . . . . 9
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) | 
| 4 | 3 | exbii 1848 | . . . . . . . 8
⊢
(∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) | 
| 5 |  | nfs1v 2156 | . . . . . . . . . 10
⊢
Ⅎ𝑦[𝑣 / 𝑦]𝜑 | 
| 6 | 5 | nfsb 2528 | . . . . . . . . 9
⊢
Ⅎ𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 | 
| 7 | 6 | 19.41 2235 | . . . . . . . 8
⊢
(∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) | 
| 8 | 4, 7 | bitr3i 277 | . . . . . . 7
⊢
(∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) | 
| 9 | 8 | exbii 1848 | . . . . . 6
⊢
(∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) | 
| 10 |  | nfs1v 2156 | . . . . . . 7
⊢
Ⅎ𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 | 
| 11 | 10 | 19.41 2235 | . . . . . 6
⊢
(∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) | 
| 12 | 9, 11 | bitr2i 276 | . . . . 5
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) | 
| 13 | 12 | anbi2i 623 | . . . 4
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) | 
| 14 | 2, 13 | bitr3i 277 | . . 3
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) | 
| 15 |  | pm5.32 573 | . . 3
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))) | 
| 16 | 14, 15 | mpbir 231 | . 2
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) | 
| 17 | 1, 16 | sylbi 217 | 1
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |