Proof of Theorem 2pm13.193VD
Step | Hyp | Ref
| Expression |
1 | | idn1 42153 |
. . . . 5
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ) |
2 | | simpl 483 |
. . . . 5
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
3 | 1, 2 | e1a 42206 |
. . . 4
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ) |
4 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑥 = 𝑢) |
5 | 3, 4 | e1a 42206 |
. . . . . . . . . 10
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ 𝑥 = 𝑢 ) |
6 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) |
7 | 1, 6 | e1a 42206 |
. . . . . . . . . 10
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ) |
8 | | pm3.21 472 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢))) |
9 | 5, 7, 8 | e11 42267 |
. . . . . . . . 9
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) ) |
10 | | sbequ2 2241 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑣 / 𝑦]𝜑)) |
11 | 10 | imdistanri 570 |
. . . . . . . . 9
⊢ (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) → ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)) |
12 | 9, 11 | e1a 42206 |
. . . . . . . 8
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) ) |
13 | | simpl 483 |
. . . . . . . 8
⊢ (([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) → [𝑣 / 𝑦]𝜑) |
14 | 12, 13 | e1a 42206 |
. . . . . . 7
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ [𝑣 / 𝑦]𝜑 ) |
15 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣) |
16 | 3, 15 | e1a 42206 |
. . . . . . 7
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ 𝑦 = 𝑣 ) |
17 | | pm3.2 470 |
. . . . . . 7
⊢ ([𝑣 / 𝑦]𝜑 → (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣))) |
18 | 14, 16, 17 | e11 42267 |
. . . . . 6
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) ) |
19 | | sbequ2 2241 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑 → 𝜑)) |
20 | 19 | imdistanri 570 |
. . . . . 6
⊢ (([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) → (𝜑 ∧ 𝑦 = 𝑣)) |
21 | 18, 20 | e1a 42206 |
. . . . 5
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ (𝜑 ∧ 𝑦 = 𝑣) ) |
22 | | simpl 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = 𝑣) → 𝜑) |
23 | 21, 22 | e1a 42206 |
. . . 4
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ 𝜑 ) |
24 | | pm3.2 470 |
. . . 4
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (𝜑 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
25 | 3, 23, 24 | e11 42267 |
. . 3
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ) |
26 | 25 | in1 42150 |
. 2
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
27 | | idn1 42153 |
. . . . 5
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ) |
28 | | simpl 483 |
. . . . 5
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
29 | 27, 28 | e1a 42206 |
. . . 4
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ) |
30 | 29, 4 | e1a 42206 |
. . . . . . 7
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑥 = 𝑢 ) |
31 | 29, 15 | e1a 42206 |
. . . . . . . . . 10
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝑦 = 𝑣 ) |
32 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → 𝜑) |
33 | 27, 32 | e1a 42206 |
. . . . . . . . . 10
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ 𝜑 ) |
34 | | pm3.21 472 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝜑 → (𝜑 ∧ 𝑦 = 𝑣))) |
35 | 31, 33, 34 | e11 42267 |
. . . . . . . . 9
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ (𝜑 ∧ 𝑦 = 𝑣) ) |
36 | | sbequ1 2240 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝜑 → [𝑣 / 𝑦]𝜑)) |
37 | 36 | imdistanri 570 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = 𝑣) → ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣)) |
38 | 35, 37 | e1a 42206 |
. . . . . . . 8
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) ) |
39 | | simpl 483 |
. . . . . . . 8
⊢ (([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣) → [𝑣 / 𝑦]𝜑) |
40 | 38, 39 | e1a 42206 |
. . . . . . 7
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑣 / 𝑦]𝜑 ) |
41 | | pm3.21 472 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢))) |
42 | 30, 40, 41 | e11 42267 |
. . . . . 6
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) ) |
43 | | sbequ1 2240 |
. . . . . . 7
⊢ (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
44 | 43 | imdistanri 570 |
. . . . . 6
⊢ (([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)) |
45 | 42, 44 | e1a 42206 |
. . . . 5
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) ) |
46 | | simpl 483 |
. . . . 5
⊢ (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) |
47 | 45, 46 | e1a 42206 |
. . . 4
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ) |
48 | | pm3.2 470 |
. . . 4
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))) |
49 | 29, 47, 48 | e11 42267 |
. . 3
⊢ ( ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ) |
50 | 49 | in1 42150 |
. 2
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
51 | 26, 50 | impbii 208 |
1
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |