Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pm13.193VD Structured version   Visualization version   GIF version

Theorem 2pm13.193VD 42482
Description: Virtual deduction proof of 2pm13.193 42131. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 42131 is 2pm13.193VD 42482 without virtual deductions and was automatically derived from 2pm13.193VD 42482. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
2:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   )
4:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
5:3,4: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
6:5: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
7:6: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
8:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   )
9:7,8: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
10:9: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
11:10: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝜑   )
12:2,11: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
13:12: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   )
17:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑    )
18:16,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ( 𝜑𝑦 = 𝑣)   )
19:18: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
20:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   )
21:19: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
22:20,21: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
23:22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
24:23: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
25:15,24: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
26:25: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
qed:13,26: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Assertion
Ref Expression
2pm13.193VD (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))

Proof of Theorem 2pm13.193VD
StepHypRef Expression
1 idn1 42153 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
2 simpl 483 . . . . 5 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (𝑥 = 𝑢𝑦 = 𝑣))
31, 2e1a 42206 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
4 simpl 483 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
53, 4e1a 42206 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   )
6 simpr 485 . . . . . . . . . . 11 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
71, 6e1a 42206 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
8 pm3.21 472 . . . . . . . . . 10 (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)))
95, 7, 8e11 42267 . . . . . . . . 9 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
10 sbequ2 2241 . . . . . . . . . 10 (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑣 / 𝑦]𝜑))
1110imdistanri 570 . . . . . . . . 9 (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢) → ([𝑣 / 𝑦]𝜑𝑥 = 𝑢))
129, 11e1a 42206 . . . . . . . 8 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
13 simpl 483 . . . . . . . 8 (([𝑣 / 𝑦]𝜑𝑥 = 𝑢) → [𝑣 / 𝑦]𝜑)
1412, 13e1a 42206 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
15 simpr 485 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
163, 15e1a 42206 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   )
17 pm3.2 470 . . . . . . 7 ([𝑣 / 𝑦]𝜑 → (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)))
1814, 16, 17e11 42267 . . . . . 6 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
19 sbequ2 2241 . . . . . . 7 (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑𝜑))
2019imdistanri 570 . . . . . 6 (([𝑣 / 𝑦]𝜑𝑦 = 𝑣) → (𝜑𝑦 = 𝑣))
2118, 20e1a 42206 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
22 simpl 483 . . . . 5 ((𝜑𝑦 = 𝑣) → 𝜑)
2321, 22e1a 42206 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   𝜑   )
24 pm3.2 470 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝜑 → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
253, 23, 24e11 42267 . . 3 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
2625in1 42150 . 2 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
27 idn1 42153 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
28 simpl 483 . . . . 5 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → (𝑥 = 𝑢𝑦 = 𝑣))
2927, 28e1a 42206 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
3029, 4e1a 42206 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   )
3129, 15e1a 42206 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   )
32 simpr 485 . . . . . . . . . . 11 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → 𝜑)
3327, 32e1a 42206 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑   )
34 pm3.21 472 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝜑 → (𝜑𝑦 = 𝑣)))
3531, 33, 34e11 42267 . . . . . . . . 9 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
36 sbequ1 2240 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝜑 → [𝑣 / 𝑦]𝜑))
3736imdistanri 570 . . . . . . . . 9 ((𝜑𝑦 = 𝑣) → ([𝑣 / 𝑦]𝜑𝑦 = 𝑣))
3835, 37e1a 42206 . . . . . . . 8 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
39 simpl 483 . . . . . . . 8 (([𝑣 / 𝑦]𝜑𝑦 = 𝑣) → [𝑣 / 𝑦]𝜑)
4038, 39e1a 42206 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
41 pm3.21 472 . . . . . . 7 (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)))
4230, 40, 41e11 42267 . . . . . 6 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
43 sbequ1 2240 . . . . . . 7 (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
4443imdistanri 570 . . . . . 6 (([𝑣 / 𝑦]𝜑𝑥 = 𝑢) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢))
4542, 44e1a 42206 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
46 simpl 483 . . . . 5 (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
4745, 46e1a 42206 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
48 pm3.2 470 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)))
4929, 47, 48e11 42267 . . 3 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
5049in1 42150 . 2 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
5126, 50impbii 208 1 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-vd1 42149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator