Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pm13.193VD Structured version   Visualization version   GIF version

Theorem 2pm13.193VD 43967
Description: Virtual deduction proof of 2pm13.193 43616. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 43616 is 2pm13.193VD 43967 without virtual deductions and was automatically derived from 2pm13.193VD 43967. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
2:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   )
4:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
5:3,4: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
6:5: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
7:6: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
8:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   )
9:7,8: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
10:9: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
11:10: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝜑   )
12:2,11: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
13:12: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   )
17:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑    )
18:16,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ( 𝜑𝑦 = 𝑣)   )
19:18: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
20:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   )
21:19: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
22:20,21: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
23:22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
24:23: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
25:15,24: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
26:25: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
qed:13,26: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Assertion
Ref Expression
2pm13.193VD (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))

Proof of Theorem 2pm13.193VD
StepHypRef Expression
1 idn1 43638 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
2 simpl 482 . . . . 5 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (𝑥 = 𝑢𝑦 = 𝑣))
31, 2e1a 43691 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
4 simpl 482 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
53, 4e1a 43691 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   )
6 simpr 484 . . . . . . . . . . 11 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
71, 6e1a 43691 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
8 pm3.21 471 . . . . . . . . . 10 (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)))
95, 7, 8e11 43752 . . . . . . . . 9 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
10 sbequ2 2240 . . . . . . . . . 10 (𝑥 = 𝑢 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑣 / 𝑦]𝜑))
1110imdistanri 569 . . . . . . . . 9 (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢) → ([𝑣 / 𝑦]𝜑𝑥 = 𝑢))
129, 11e1a 43691 . . . . . . . 8 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
13 simpl 482 . . . . . . . 8 (([𝑣 / 𝑦]𝜑𝑥 = 𝑢) → [𝑣 / 𝑦]𝜑)
1412, 13e1a 43691 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
15 simpr 484 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑦 = 𝑣)
163, 15e1a 43691 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   )
17 pm3.2 469 . . . . . . 7 ([𝑣 / 𝑦]𝜑 → (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)))
1814, 16, 17e11 43752 . . . . . 6 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
19 sbequ2 2240 . . . . . . 7 (𝑦 = 𝑣 → ([𝑣 / 𝑦]𝜑𝜑))
2019imdistanri 569 . . . . . 6 (([𝑣 / 𝑦]𝜑𝑦 = 𝑣) → (𝜑𝑦 = 𝑣))
2118, 20e1a 43691 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
22 simpl 482 . . . . 5 ((𝜑𝑦 = 𝑣) → 𝜑)
2321, 22e1a 43691 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   𝜑   )
24 pm3.2 469 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝜑 → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
253, 23, 24e11 43752 . . 3 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
2625in1 43635 . 2 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
27 idn1 43638 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
28 simpl 482 . . . . 5 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → (𝑥 = 𝑢𝑦 = 𝑣))
2927, 28e1a 43691 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
3029, 4e1a 43691 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   )
3129, 15e1a 43691 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   )
32 simpr 484 . . . . . . . . . . 11 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → 𝜑)
3327, 32e1a 43691 . . . . . . . . . 10 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑   )
34 pm3.21 471 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝜑 → (𝜑𝑦 = 𝑣)))
3531, 33, 34e11 43752 . . . . . . . . 9 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
36 sbequ1 2239 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝜑 → [𝑣 / 𝑦]𝜑))
3736imdistanri 569 . . . . . . . . 9 ((𝜑𝑦 = 𝑣) → ([𝑣 / 𝑦]𝜑𝑦 = 𝑣))
3835, 37e1a 43691 . . . . . . . 8 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
39 simpl 482 . . . . . . . 8 (([𝑣 / 𝑦]𝜑𝑦 = 𝑣) → [𝑣 / 𝑦]𝜑)
4038, 39e1a 43691 . . . . . . 7 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
41 pm3.21 471 . . . . . . 7 (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)))
4230, 40, 41e11 43752 . . . . . 6 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
43 sbequ1 2239 . . . . . . 7 (𝑥 = 𝑢 → ([𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
4443imdistanri 569 . . . . . 6 (([𝑣 / 𝑦]𝜑𝑥 = 𝑢) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢))
4542, 44e1a 43691 . . . . 5 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
46 simpl 482 . . . . 5 (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢) → [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
4745, 46e1a 43691 . . . 4 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
48 pm3.2 469 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)))
4929, 47, 48e11 43752 . . 3 (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
5049in1 43635 . 2 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
5126, 50impbii 208 1 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  [wsb 2066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-sb 2067  df-vd1 43634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator