|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2r19.29 | Structured version Visualization version GIF version | ||
| Description: Theorem r19.29 3114 with two quantifiers. (Contributed by Rodolfo Medina, 25-Sep-2010.) | 
| Ref | Expression | 
|---|---|
| 2r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.29 3114 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) | |
| 2 | r19.29 3114 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓)) | |
| 3 | 2 | reximi 3084 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓)) | 
| 4 | 1, 3 | syl 17 | 1 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3061 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3062 df-rex 3071 | 
| This theorem is referenced by: r19.29d2r 3140 rnmposs 32684 disjdmqsss 38803 disjdmqscossss 38804 prter2 38882 | 
| Copyright terms: Public domain | W3C validator |