![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmposs | Structured version Visualization version GIF version |
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 23-May-2017.) |
Ref | Expression |
---|---|
rnmposs.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
rnmposs | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmposs.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | rnmpo 7560 | . . . 4 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
3 | 2 | eqabri 2873 | . . 3 ⊢ (𝑧 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) |
4 | 2r19.29 3136 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶)) | |
5 | eleq1 2817 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ 𝐷 ↔ 𝐶 ∈ 𝐷)) | |
6 | 5 | biimparc 478 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷)) |
8 | 7 | rexlimivv 3197 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
9 | 4, 8 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
10 | 9 | ex 411 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
11 | 3, 10 | biimtrid 241 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → (𝑧 ∈ ran 𝐹 → 𝑧 ∈ 𝐷)) |
12 | 11 | ssrdv 3988 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 ⊆ wss 3949 ran crn 5683 ∈ cmpo 7428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-cnv 5690 df-dm 5692 df-rn 5693 df-oprab 7430 df-mpo 7431 |
This theorem is referenced by: fedgmul 33362 raddcn 33563 br2base 33922 sxbrsiga 33943 |
Copyright terms: Public domain | W3C validator |