| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmposs | Structured version Visualization version GIF version | ||
| Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 23-May-2017.) |
| Ref | Expression |
|---|---|
| rnmposs.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| rnmposs | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmposs.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | rnmpo 7540 | . . . 4 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
| 3 | 2 | eqabri 2878 | . . 3 ⊢ (𝑧 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) |
| 4 | 2r19.29 3126 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶)) | |
| 5 | eleq1 2822 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑧 ∈ 𝐷 ↔ 𝐶 ∈ 𝐷)) | |
| 6 | 5 | biimparc 479 | . . . . . . 7 ⊢ ((𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷)) |
| 8 | 7 | rexlimivv 3186 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 ∈ 𝐷 ∧ 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
| 9 | 4, 8 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶) → 𝑧 ∈ 𝐷) |
| 10 | 9 | ex 412 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷)) |
| 11 | 3, 10 | biimtrid 242 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → (𝑧 ∈ ran 𝐹 → 𝑧 ∈ 𝐷)) |
| 12 | 11 | ssrdv 3964 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → ran 𝐹 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ran crn 5655 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: fedgmul 33671 raddcn 33960 br2base 34301 sxbrsiga 34322 |
| Copyright terms: Public domain | W3C validator |