Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmposs Structured version   Visualization version   GIF version

Theorem rnmposs 32652
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 23-May-2017.)
Hypothesis
Ref Expression
rnmposs.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
rnmposs (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → ran 𝐹𝐷)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem rnmposs
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rnmposs.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21rnmpo 7540 . . . 4 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
32eqabri 2878 . . 3 (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶)
4 2r19.29 3126 . . . . 5 ((∀𝑥𝐴𝑦𝐵 𝐶𝐷 ∧ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶) → ∃𝑥𝐴𝑦𝐵 (𝐶𝐷𝑧 = 𝐶))
5 eleq1 2822 . . . . . . . 8 (𝑧 = 𝐶 → (𝑧𝐷𝐶𝐷))
65biimparc 479 . . . . . . 7 ((𝐶𝐷𝑧 = 𝐶) → 𝑧𝐷)
76a1i 11 . . . . . 6 ((𝑥𝐴𝑦𝐵) → ((𝐶𝐷𝑧 = 𝐶) → 𝑧𝐷))
87rexlimivv 3186 . . . . 5 (∃𝑥𝐴𝑦𝐵 (𝐶𝐷𝑧 = 𝐶) → 𝑧𝐷)
94, 8syl 17 . . . 4 ((∀𝑥𝐴𝑦𝐵 𝐶𝐷 ∧ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶) → 𝑧𝐷)
109ex 412 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝑧𝐷))
113, 10biimtrid 242 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → (𝑧 ∈ ran 𝐹𝑧𝐷))
1211ssrdv 3964 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → ran 𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926  ran crn 5655  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  fedgmul  33671  raddcn  33960  br2base  34301  sxbrsiga  34322
  Copyright terms: Public domain W3C validator