Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmposs Structured version   Visualization version   GIF version

Theorem rnmposs 30417
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Thierry Arnoux, 23-May-2017.)
Hypothesis
Ref Expression
rnmposs.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
rnmposs (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → ran 𝐹𝐷)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem rnmposs
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rnmposs.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21rnmpo 7277 . . . 4 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
32abeq2i 2947 . . 3 (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶)
4 2r19.29 3333 . . . . 5 ((∀𝑥𝐴𝑦𝐵 𝐶𝐷 ∧ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶) → ∃𝑥𝐴𝑦𝐵 (𝐶𝐷𝑧 = 𝐶))
5 eleq1 2899 . . . . . . . 8 (𝑧 = 𝐶 → (𝑧𝐷𝐶𝐷))
65biimparc 482 . . . . . . 7 ((𝐶𝐷𝑧 = 𝐶) → 𝑧𝐷)
76a1i 11 . . . . . 6 ((𝑥𝐴𝑦𝐵) → ((𝐶𝐷𝑧 = 𝐶) → 𝑧𝐷))
87rexlimivv 3291 . . . . 5 (∃𝑥𝐴𝑦𝐵 (𝐶𝐷𝑧 = 𝐶) → 𝑧𝐷)
94, 8syl 17 . . . 4 ((∀𝑥𝐴𝑦𝐵 𝐶𝐷 ∧ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶) → 𝑧𝐷)
109ex 415 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶𝑧𝐷))
113, 10syl5bi 244 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → (𝑧 ∈ ran 𝐹𝑧𝐷))
1211ssrdv 3966 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → ran 𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3137  wrex 3138  wss 3929  ran crn 5549  cmpo 7151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-br 5060  df-opab 5122  df-cnv 5556  df-dm 5558  df-rn 5559  df-oprab 7153  df-mpo 7154
This theorem is referenced by:  fedgmul  31049  raddcn  31191  br2base  31546  sxbrsiga  31567
  Copyright terms: Public domain W3C validator