| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rspcedvdw | Structured version Visualization version GIF version | ||
| Description: Double application of rspcedvdw 3609. (Contributed by SN, 24-Aug-2024.) |
| Ref | Expression |
|---|---|
| 2rspcedvdw.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| 2rspcedvdw.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
| 2rspcedvdw.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 2rspcedvdw.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| 2rspcedvdw.3 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| 2rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rspcedvdw.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | 2rspcedvdw.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 3 | 2rspcedvdw.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | 2rspcedvdw.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 5 | 2rspcedvdw.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 6 | 4, 5 | rspc2ev 3619 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝜃) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: elq2 32795 gsumwun 33064 elrgspnlem2 33243 elrspunsn 33449 posbezout 42118 flt4lem7 42649 nna4b4nsq 42650 usgrgrtrirex 47929 gpg3kgrtriex 48058 |
| Copyright terms: Public domain | W3C validator |