MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rspcedvdw Structured version   Visualization version   GIF version

Theorem 2rspcedvdw 3605
Description: Double application of rspcedvdw 3594. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
2rspcedvdw.1 (𝑥 = 𝐴 → (𝜓𝜒))
2rspcedvdw.2 (𝑦 = 𝐵 → (𝜒𝜃))
2rspcedvdw.a (𝜑𝐴𝑋)
2rspcedvdw.b (𝜑𝐵𝑌)
2rspcedvdw.3 (𝜑𝜃)
Assertion
Ref Expression
2rspcedvdw (𝜑 → ∃𝑥𝑋𝑦𝑌 𝜓)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝑋   𝑥,𝑌,𝑦   𝜒,𝑥   𝜃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑥)   𝐵(𝑥)   𝑋(𝑦)

Proof of Theorem 2rspcedvdw
StepHypRef Expression
1 2rspcedvdw.a . 2 (𝜑𝐴𝑋)
2 2rspcedvdw.b . 2 (𝜑𝐵𝑌)
3 2rspcedvdw.3 . 2 (𝜑𝜃)
4 2rspcedvdw.1 . . 3 (𝑥 = 𝐴 → (𝜓𝜒))
5 2rspcedvdw.2 . . 3 (𝑦 = 𝐵 → (𝜒𝜃))
64, 5rspc2ev 3604 . 2 ((𝐴𝑋𝐵𝑌𝜃) → ∃𝑥𝑋𝑦𝑌 𝜓)
71, 2, 3, 6syl3anc 1373 1 (𝜑 → ∃𝑥𝑋𝑦𝑌 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055
This theorem is referenced by:  elq2  32743  gsumwun  33012  elrgspnlem2  33201  elrspunsn  33407  posbezout  42095  flt4lem7  42654  nna4b4nsq  42655  usgrgrtrirex  47953  gpg3kgrtriex  48084
  Copyright terms: Public domain W3C validator