![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rspcedvdw | Structured version Visualization version GIF version |
Description: Double application of rspcedvdw 3638. (Contributed by SN, 24-Aug-2024.) |
Ref | Expression |
---|---|
2rspcedvdw.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
2rspcedvdw.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
2rspcedvdw.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
2rspcedvdw.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
2rspcedvdw.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
2rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rspcedvdw.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | 2rspcedvdw.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
3 | 2rspcedvdw.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | 2rspcedvdw.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
5 | 2rspcedvdw.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
6 | 4, 5 | rspc2ev 3648 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝜃) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
7 | 1, 2, 3, 6 | syl3anc 1371 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 |
This theorem is referenced by: elrspunsn 33422 posbezout 42057 flt4lem7 42614 nna4b4nsq 42615 usgrgrtrirex 47799 |
Copyright terms: Public domain | W3C validator |