Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2rspcedvdw | Structured version Visualization version GIF version |
Description: Double application of rspcedvdw 40179. (Contributed by SN, 24-Aug-2024.) |
Ref | Expression |
---|---|
2rspcedvdw.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
2rspcedvdw.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
2rspcedvdw.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
2rspcedvdw.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
2rspcedvdw.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
2rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rspcedvdw.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | 2rspcedvdw.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
3 | 2rspcedvdw.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | 2rspcedvdw.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
5 | 2rspcedvdw.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
6 | 4, 5 | rspc2ev 3572 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝜃) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
7 | 1, 2, 3, 6 | syl3anc 1370 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 |
This theorem is referenced by: flt4lem7 40496 nna4b4nsq 40497 |
Copyright terms: Public domain | W3C validator |