|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2rspcedvdw | Structured version Visualization version GIF version | ||
| Description: Double application of rspcedvdw 3625. (Contributed by SN, 24-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| 2rspcedvdw.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | 
| 2rspcedvdw.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | 
| 2rspcedvdw.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) | 
| 2rspcedvdw.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) | 
| 2rspcedvdw.3 | ⊢ (𝜑 → 𝜃) | 
| Ref | Expression | 
|---|---|
| 2rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2rspcedvdw.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | 2rspcedvdw.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 3 | 2rspcedvdw.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | 2rspcedvdw.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 5 | 2rspcedvdw.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 6 | 4, 5 | rspc2ev 3635 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝜃) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) | 
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 | 
| This theorem is referenced by: gsumwun 33068 elrgspnlem2 33247 elrspunsn 33457 posbezout 42101 flt4lem7 42669 nna4b4nsq 42670 usgrgrtrirex 47917 gpg3kgrtriex 48045 | 
| Copyright terms: Public domain | W3C validator |