![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rspcedvdw | Structured version Visualization version GIF version |
Description: Double application of rspcedvdw 3607. (Contributed by SN, 24-Aug-2024.) |
Ref | Expression |
---|---|
2rspcedvdw.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
2rspcedvdw.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
2rspcedvdw.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
2rspcedvdw.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
2rspcedvdw.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
2rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rspcedvdw.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | 2rspcedvdw.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
3 | 2rspcedvdw.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | 2rspcedvdw.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
5 | 2rspcedvdw.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
6 | 4, 5 | rspc2ev 3616 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝜃) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
7 | 1, 2, 3, 6 | syl3anc 1368 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 |
This theorem is referenced by: elrspunsn 32982 flt4lem7 41856 nna4b4nsq 41857 |
Copyright terms: Public domain | W3C validator |