| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rspcedvdw | Structured version Visualization version GIF version | ||
| Description: Double application of rspcedvdw 3575. (Contributed by SN, 24-Aug-2024.) |
| Ref | Expression |
|---|---|
| 2rspcedvdw.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| 2rspcedvdw.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
| 2rspcedvdw.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 2rspcedvdw.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| 2rspcedvdw.3 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| 2rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rspcedvdw.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | 2rspcedvdw.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 3 | 2rspcedvdw.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | 2rspcedvdw.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 5 | 2rspcedvdw.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 6 | 4, 5 | rspc2ev 3585 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝜃) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: zs12addscl 28387 zs12half 28390 zs12zodd 28392 elq2 32794 gsumwun 33045 elrgspnlem2 33210 elrspunsn 33394 posbezout 42192 flt4lem7 42751 nna4b4nsq 42752 usgrgrtrirex 48049 gpg3kgrtriex 48188 grlimedgnedg 48230 |
| Copyright terms: Public domain | W3C validator |