| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2dv | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 6-Mar-2025.) |
| Ref | Expression |
|---|---|
| rspc2dv.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| rspc2dv.2 | ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜒)) |
| rspc2dv.3 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜓) |
| rspc2dv.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| rspc2dv.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| rspc2dv | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2dv.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | rspc2dv.5 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 3 | rspc2dv.3 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜓) | |
| 4 | rspc2dv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 5 | rspc2dv.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜒)) | |
| 6 | 4, 5 | rspc2va 3603 | . 2 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜓) → 𝜒) |
| 7 | 1, 2, 3, 6 | syl21anc 837 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 |
| This theorem is referenced by: mulscom 28049 addsdilem3 28063 addsdilem4 28064 mulsasslem3 28075 rprmdvds 33497 cvxsconn 35237 oppcmndclem 49010 ssccatid 49065 termcbasmo 49476 fulltermc2 49505 arweuthinc 49522 arweutermc 49523 |
| Copyright terms: Public domain | W3C validator |