Step | Hyp | Ref
| Expression |
1 | | elrspunidl.n |
. . 3
⊢ 𝑁 = (RSpan‘𝑅) |
2 | | elrspunidl.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
3 | | elrspunidl.1 |
. . 3
⊢ 0 =
(0g‘𝑅) |
4 | | elrspunidl.x |
. . 3
⊢ · =
(.r‘𝑅) |
5 | | elrspunidl.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
6 | | elrspunsn.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
7 | | eqid 2733 |
. . . . . 6
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
8 | 2, 7 | lidlss 20820 |
. . . . 5
⊢ (𝐼 ∈ (LIdeal‘𝑅) → 𝐼 ⊆ 𝐵) |
9 | 6, 8 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
10 | | elrspunsn.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝐼)) |
11 | 10 | eldifad 3959 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
12 | 11 | snssd 4811 |
. . . 4
⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
13 | 9, 12 | unssd 4185 |
. . 3
⊢ (𝜑 → (𝐼 ∪ {𝑋}) ⊆ 𝐵) |
14 | 1, 2, 3, 4, 5, 13 | elrsp 32455 |
. 2
⊢ (𝜑 → (𝐴 ∈ (𝑁‘(𝐼 ∪ {𝑋})) ↔ ∃𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))(𝑎 finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))))) |
15 | | oveq1 7411 |
. . . . . . . 8
⊢ (𝑟 = (𝑎‘𝑋) → (𝑟 · 𝑋) = ((𝑎‘𝑋) · 𝑋)) |
16 | 15 | oveq1d 7419 |
. . . . . . 7
⊢ (𝑟 = (𝑎‘𝑋) → ((𝑟 · 𝑋) + 𝑖) = (((𝑎‘𝑋) · 𝑋) + 𝑖)) |
17 | 16 | eqeq2d 2744 |
. . . . . 6
⊢ (𝑟 = (𝑎‘𝑋) → (𝐴 = ((𝑟 · 𝑋) + 𝑖) ↔ 𝐴 = (((𝑎‘𝑋) · 𝑋) + 𝑖))) |
18 | | oveq2 7412 |
. . . . . . 7
⊢ (𝑖 = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) → (((𝑎‘𝑋) · 𝑋) + 𝑖) = (((𝑎‘𝑋) · 𝑋) + (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))))) |
19 | 18 | eqeq2d 2744 |
. . . . . 6
⊢ (𝑖 = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) → (𝐴 = (((𝑎‘𝑋) · 𝑋) + 𝑖) ↔ 𝐴 = (((𝑎‘𝑋) · 𝑋) + (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥)))))) |
20 | | elmapi 8839 |
. . . . . . . 8
⊢ (𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋})) → 𝑎:(𝐼 ∪ {𝑋})⟶𝐵) |
21 | 20 | ad3antlr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝑎:(𝐼 ∪ {𝑋})⟶𝐵) |
22 | 11 | ad3antrrr 729 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝑋 ∈ 𝐵) |
23 | | snidg 4661 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ {𝑋}) |
24 | | elun2 4176 |
. . . . . . . 8
⊢ (𝑋 ∈ {𝑋} → 𝑋 ∈ (𝐼 ∪ {𝑋})) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝑋 ∈ (𝐼 ∪ {𝑋})) |
26 | 21, 25 | ffvelcdmd 7083 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑎‘𝑋) ∈ 𝐵) |
27 | 2 | fvexi 6902 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ V |
28 | 27 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝐵 ∈ V) |
29 | 6 | ad3antrrr 729 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝐼 ∈ (LIdeal‘𝑅)) |
30 | | ssun1 4171 |
. . . . . . . . . . . 12
⊢ 𝐼 ⊆ (𝐼 ∪ {𝑋}) |
31 | 30 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝐼 ⊆ (𝐼 ∪ {𝑋})) |
32 | 21, 31 | fssresd 6755 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑎 ↾ 𝐼):𝐼⟶𝐵) |
33 | 28, 29, 32 | elmapdd 8831 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑎 ↾ 𝐼) ∈ (𝐵 ↑m 𝐼)) |
34 | | breq1 5150 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑎 ↾ 𝐼) → (𝑏 finSupp 0 ↔ (𝑎 ↾ 𝐼) finSupp 0 )) |
35 | | fveq1 6887 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑎 ↾ 𝐼) → (𝑏‘𝑦) = ((𝑎 ↾ 𝐼)‘𝑦)) |
36 | 35 | oveq1d 7419 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (𝑎 ↾ 𝐼) → ((𝑏‘𝑦) · 𝑦) = (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦)) |
37 | 36 | mpteq2dv 5249 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝑎 ↾ 𝐼) → (𝑦 ∈ 𝐼 ↦ ((𝑏‘𝑦) · 𝑦)) = (𝑦 ∈ 𝐼 ↦ (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦))) |
38 | 37 | oveq2d 7420 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑎 ↾ 𝐼) → (𝑅 Σg (𝑦 ∈ 𝐼 ↦ ((𝑏‘𝑦) · 𝑦))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦)))) |
39 | 38 | eqeq2d 2744 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑎 ↾ 𝐼) → ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ ((𝑏‘𝑦) · 𝑦))) ↔ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦))))) |
40 | 34, 39 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑎 ↾ 𝐼) → ((𝑏 finSupp 0 ∧ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ ((𝑏‘𝑦) · 𝑦)))) ↔ ((𝑎 ↾ 𝐼) finSupp 0 ∧ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦)))))) |
41 | 40 | adantl 483 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) ∧ 𝑏 = (𝑎 ↾ 𝐼)) → ((𝑏 finSupp 0 ∧ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ ((𝑏‘𝑦) · 𝑦)))) ↔ ((𝑎 ↾ 𝐼) finSupp 0 ∧ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦)))))) |
42 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝑎 finSupp 0 ) |
43 | 5 | ad3antrrr 729 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝑅 ∈ Ring) |
44 | 2, 3 | ring0cl 20074 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 0 ∈ 𝐵) |
46 | 42, 45 | fsuppres 9384 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑎 ↾ 𝐼) finSupp 0 ) |
47 | | fveq2 6888 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑎‘𝑥) = (𝑎‘𝑦)) |
48 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
49 | 47, 48 | oveq12d 7422 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑎‘𝑥) · 𝑥) = ((𝑎‘𝑦) · 𝑦)) |
50 | 49 | cbvmptv 5260 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥)) = (𝑦 ∈ 𝐼 ↦ ((𝑎‘𝑦) · 𝑦)) |
51 | | simpr 486 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
52 | 51 | fvresd 6908 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) ∧ 𝑦 ∈ 𝐼) → ((𝑎 ↾ 𝐼)‘𝑦) = (𝑎‘𝑦)) |
53 | 52 | oveq1d 7419 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) ∧ 𝑦 ∈ 𝐼) → (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦) = ((𝑎‘𝑦) · 𝑦)) |
54 | 53 | mpteq2dva 5247 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑦 ∈ 𝐼 ↦ (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦)) = (𝑦 ∈ 𝐼 ↦ ((𝑎‘𝑦) · 𝑦))) |
55 | 50, 54 | eqtr4id 2792 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥)) = (𝑦 ∈ 𝐼 ↦ (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦))) |
56 | 55 | oveq2d 7420 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦)))) |
57 | 46, 56 | jca 513 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → ((𝑎 ↾ 𝐼) finSupp 0 ∧ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ (((𝑎 ↾ 𝐼)‘𝑦) · 𝑦))))) |
58 | 33, 41, 57 | rspcedvd 3614 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → ∃𝑏 ∈ (𝐵 ↑m 𝐼)(𝑏 finSupp 0 ∧ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ ((𝑏‘𝑦) · 𝑦))))) |
59 | 9 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝐼 ⊆ 𝐵) |
60 | 1, 2, 3, 4, 43, 59 | elrsp 32455 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) ∈ (𝑁‘𝐼) ↔ ∃𝑏 ∈ (𝐵 ↑m 𝐼)(𝑏 finSupp 0 ∧ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑦 ∈ 𝐼 ↦ ((𝑏‘𝑦) · 𝑦)))))) |
61 | 58, 60 | mpbird 257 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) ∈ (𝑁‘𝐼)) |
62 | 1, 7 | rspidlid 32456 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑁‘𝐼) = 𝐼) |
63 | 5, 6, 62 | syl2anc 585 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘𝐼) = 𝐼) |
64 | 63 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑁‘𝐼) = 𝐼) |
65 | 61, 64 | eleqtrd 2836 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) ∈ 𝐼) |
66 | | simpr 486 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) |
67 | | elrspunsn.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝑅) |
68 | 5 | ringcmnd 20091 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ CMnd) |
69 | 68 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝑅 ∈ CMnd) |
70 | 6 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝐼 ∈ (LIdeal‘𝑅)) |
71 | | snex 5430 |
. . . . . . . . . . . 12
⊢ {𝑋} ∈ V |
72 | 71 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → {𝑋} ∈ V) |
73 | 70, 72 | unexd 7736 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝐼 ∪ {𝑋}) ∈ V) |
74 | 5 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → 𝑅 ∈ Ring) |
75 | 20 | ad3antlr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → 𝑎:(𝐼 ∪ {𝑋})⟶𝐵) |
76 | | simpr 486 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → 𝑥 ∈ (𝐼 ∪ {𝑋})) |
77 | 75, 76 | ffvelcdmd 7083 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → (𝑎‘𝑥) ∈ 𝐵) |
78 | 13 | ad3antrrr 729 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → (𝐼 ∪ {𝑋}) ⊆ 𝐵) |
79 | 78, 76 | sseldd 3982 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → 𝑥 ∈ 𝐵) |
80 | 2, 4, 74, 77, 79 | ringcld 20070 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → ((𝑎‘𝑥) · 𝑥) ∈ 𝐵) |
81 | 73 | mptexd 7221 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)) ∈ V) |
82 | 5, 44 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈ 𝐵) |
83 | 82 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 0 ∈ 𝐵) |
84 | | funmpt 6583 |
. . . . . . . . . . . 12
⊢ Fun
(𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)) |
85 | 84 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → Fun (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))) |
86 | | simpr 486 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝑎 finSupp 0 ) |
87 | 86 | fsuppimpd 9365 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝑎 supp 0 ) ∈
Fin) |
88 | 20 | ad3antlr 730 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → 𝑎:(𝐼 ∪ {𝑋})⟶𝐵) |
89 | 88 | ffnd 6715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → 𝑎 Fn (𝐼 ∪ {𝑋})) |
90 | 73 | adantr 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → (𝐼 ∪ {𝑋}) ∈ V) |
91 | 5 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → 𝑅 ∈ Ring) |
92 | 91, 44 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → 0 ∈ 𝐵) |
93 | | simpr 486 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) |
94 | 89, 90, 92, 93 | fvdifsupp 31885 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → (𝑎‘𝑥) = 0 ) |
95 | 94 | oveq1d 7419 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → ((𝑎‘𝑥) · 𝑥) = ( 0 · 𝑥)) |
96 | 13 | ad3antrrr 729 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → (𝐼 ∪ {𝑋}) ⊆ 𝐵) |
97 | 93 | eldifad 3959 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → 𝑥 ∈ (𝐼 ∪ {𝑋})) |
98 | 96, 97 | sseldd 3982 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → 𝑥 ∈ 𝐵) |
99 | 2, 4, 3 | ringlz 20097 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ( 0 · 𝑥) = 0 ) |
100 | 91, 98, 99 | syl2anc 585 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → ( 0 · 𝑥) = 0 ) |
101 | 95, 100 | eqtrd 2773 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) → ((𝑎‘𝑥) · 𝑥) = 0 ) |
102 | 101, 73 | suppss2 8180 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → ((𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)) supp 0 ) ⊆ (𝑎 supp 0 )) |
103 | 87, 102 | ssfid 9263 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → ((𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)) supp 0 ) ∈
Fin) |
104 | 81, 83, 85, 103 | isfsuppd 9362 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)) finSupp 0 ) |
105 | 10 | eldifbd 3960 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝑋 ∈ 𝐼) |
106 | 105 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → ¬ 𝑋 ∈ 𝐼) |
107 | | disjsn 4714 |
. . . . . . . . . . 11
⊢ ((𝐼 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐼) |
108 | 106, 107 | sylibr 233 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝐼 ∩ {𝑋}) = ∅) |
109 | | eqidd 2734 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝐼 ∪ {𝑋}) = (𝐼 ∪ {𝑋})) |
110 | 2, 3, 67, 69, 73, 80, 104, 108, 109 | gsumsplit2 19789 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝑅 Σg
(𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))) = ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) + (𝑅 Σg (𝑥 ∈ {𝑋} ↦ ((𝑎‘𝑥) · 𝑥))))) |
111 | 69 | cmnmndd 19665 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝑅 ∈ Mnd) |
112 | 11 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝑋 ∈ 𝐵) |
113 | 5 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝑅 ∈ Ring) |
114 | 20 | ad2antlr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝑎:(𝐼 ∪ {𝑋})⟶𝐵) |
115 | | ssun2 4172 |
. . . . . . . . . . . . . 14
⊢ {𝑋} ⊆ (𝐼 ∪ {𝑋}) |
116 | 11, 23 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
117 | 116 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝑋 ∈ {𝑋}) |
118 | 115, 117 | sselid 3979 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝑋 ∈ (𝐼 ∪ {𝑋})) |
119 | 114, 118 | ffvelcdmd 7083 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝑎‘𝑋) ∈ 𝐵) |
120 | 2, 4, 113, 119, 112 | ringcld 20070 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → ((𝑎‘𝑋) · 𝑋) ∈ 𝐵) |
121 | | simpr 486 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) |
122 | 121 | fveq2d 6892 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 = 𝑋) → (𝑎‘𝑥) = (𝑎‘𝑋)) |
123 | 122, 121 | oveq12d 7422 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 = 𝑋) → ((𝑎‘𝑥) · 𝑥) = ((𝑎‘𝑋) · 𝑋)) |
124 | 2, 111, 112, 120, 123 | gsumsnd 19812 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝑅 Σg
(𝑥 ∈ {𝑋} ↦ ((𝑎‘𝑥) · 𝑥))) = ((𝑎‘𝑋) · 𝑋)) |
125 | 124 | oveq2d 7420 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → ((𝑅 Σg
(𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) + (𝑅 Σg (𝑥 ∈ {𝑋} ↦ ((𝑎‘𝑥) · 𝑥)))) = ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) + ((𝑎‘𝑋) · 𝑋))) |
126 | 5 | ad3antrrr 729 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ Ring) |
127 | 20 | ad3antlr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑎:(𝐼 ∪ {𝑋})⟶𝐵) |
128 | | simpr 486 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
129 | 30, 128 | sselid 3979 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ (𝐼 ∪ {𝑋})) |
130 | 127, 129 | ffvelcdmd 7083 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑎‘𝑥) ∈ 𝐵) |
131 | 9 | ad3antrrr 729 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
132 | 131, 128 | sseldd 3982 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐵) |
133 | 2, 4, 126, 130, 132 | ringcld 20070 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝑎‘𝑥) · 𝑥) ∈ 𝐵) |
134 | 133 | fmpttd 7110 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥)):𝐼⟶𝐵) |
135 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → 𝐼 ⊆ (𝐼 ∪ {𝑋})) |
136 | 135 | ssdifd 4139 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝐼 ∖ (𝑎 supp 0 )) ⊆ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) |
137 | 136 | sselda 3981 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ (𝑎 supp 0 ))) |
138 | 137, 94 | syldan 592 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → (𝑎‘𝑥) = 0 ) |
139 | 138 | oveq1d 7419 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → ((𝑎‘𝑥) · 𝑥) = ( 0 · 𝑥)) |
140 | 5 | ad3antrrr 729 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → 𝑅 ∈ Ring) |
141 | 9 | ad3antrrr 729 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → 𝐼 ⊆ 𝐵) |
142 | | simpr 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) |
143 | 142 | eldifad 3959 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → 𝑥 ∈ 𝐼) |
144 | 141, 143 | sseldd 3982 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → 𝑥 ∈ 𝐵) |
145 | 140, 144,
99 | syl2anc 585 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → ( 0 · 𝑥) = 0 ) |
146 | 139, 145 | eqtrd 2773 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝑥 ∈ (𝐼 ∖ (𝑎 supp 0 ))) → ((𝑎‘𝑥) · 𝑥) = 0 ) |
147 | 146, 70 | suppss2 8180 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → ((𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥)) supp 0 ) ⊆ (𝑎 supp 0 )) |
148 | 87, 147 | ssfid 9263 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → ((𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥)) supp 0 ) ∈
Fin) |
149 | 2, 3, 69, 70, 134, 148 | gsumcl2 19774 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝑅 Σg
(𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) ∈ 𝐵) |
150 | 2, 67 | cmncom 19659 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CMnd ∧ (𝑅 Σg
(𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) ∈ 𝐵 ∧ ((𝑎‘𝑋) · 𝑋) ∈ 𝐵) → ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) + ((𝑎‘𝑋) · 𝑋)) = (((𝑎‘𝑋) · 𝑋) + (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))))) |
151 | 69, 149, 120, 150 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → ((𝑅 Σg
(𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))) + ((𝑎‘𝑋) · 𝑋)) = (((𝑎‘𝑋) · 𝑋) + (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))))) |
152 | 110, 125,
151 | 3eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) → (𝑅 Σg
(𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))) = (((𝑎‘𝑋) · 𝑋) + (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))))) |
153 | 152 | adantr 482 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))) = (((𝑎‘𝑋) · 𝑋) + (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))))) |
154 | 66, 153 | eqtrd 2773 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → 𝐴 = (((𝑎‘𝑋) · 𝑋) + (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑎‘𝑥) · 𝑥))))) |
155 | 17, 19, 26, 65, 154 | 2rspcedvdw 3624 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ 𝑎 finSupp 0 ) ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) → ∃𝑟 ∈ 𝐵 ∃𝑖 ∈ 𝐼 𝐴 = ((𝑟 · 𝑋) + 𝑖)) |
156 | 155 | anasss 468 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) ∧ (𝑎 finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))))) → ∃𝑟 ∈ 𝐵 ∃𝑖 ∈ 𝐼 𝐴 = ((𝑟 · 𝑋) + 𝑖)) |
157 | 156 | r19.29an 3159 |
. . 3
⊢ ((𝜑 ∧ ∃𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))(𝑎 finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))))) → ∃𝑟 ∈ 𝐵 ∃𝑖 ∈ 𝐼 𝐴 = ((𝑟 · 𝑋) + 𝑖)) |
158 | 27 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝐵 ∈ V) |
159 | 6 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝐼 ∈ (LIdeal‘𝑅)) |
160 | 71 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → {𝑋} ∈ V) |
161 | 159, 160 | unexd 7736 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝐼 ∪ {𝑋}) ∈ V) |
162 | | simp-4r 783 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑦 ∈ (𝐼 ∪ {𝑋})) → 𝑟 ∈ 𝐵) |
163 | | eqid 2733 |
. . . . . . . . . . . 12
⊢
(1r‘𝑅) = (1r‘𝑅) |
164 | 2, 163 | ringidcl 20073 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
165 | 5, 164 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
166 | 165 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑦 ∈ (𝐼 ∪ {𝑋})) → (1r‘𝑅) ∈ 𝐵) |
167 | 162, 166 | ifcld 4573 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑦 ∈ (𝐼 ∪ {𝑋})) → if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)) ∈ 𝐵) |
168 | 82 | ad4antr 731 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑦 ∈ (𝐼 ∪ {𝑋})) → 0 ∈ 𝐵) |
169 | 167, 168 | ifcld 4573 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑦 ∈ (𝐼 ∪ {𝑋})) → if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ) ∈ 𝐵) |
170 | 169 | fmpttd 7110 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )):(𝐼 ∪ {𝑋})⟶𝐵) |
171 | 158, 161,
170 | elmapdd 8831 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))) |
172 | | breq1 5150 |
. . . . . . 7
⊢ (𝑎 = (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) → (𝑎 finSupp 0 ↔ (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) finSupp 0
)) |
173 | | fveq1 6887 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) → (𝑎‘𝑥) = ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥)) |
174 | 173 | oveq1d 7419 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) → ((𝑎‘𝑥) · 𝑥) = (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)) |
175 | 174 | mpteq2dv 5249 |
. . . . . . . . 9
⊢ (𝑎 = (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) → (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)) = (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))) |
176 | 175 | oveq2d 7420 |
. . . . . . . 8
⊢ (𝑎 = (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) → (𝑅 Σg
(𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))) = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)))) |
177 | 176 | eqeq2d 2744 |
. . . . . . 7
⊢ (𝑎 = (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) → (𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))) ↔ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))))) |
178 | 172, 177 | anbi12d 632 |
. . . . . 6
⊢ (𝑎 = (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) → ((𝑎 finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) ↔ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)))))) |
179 | 178 | adantl 483 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑎 = (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))) → ((𝑎 finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) ↔ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)))))) |
180 | | eqid 2733 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) = (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) |
181 | | prfi 9318 |
. . . . . . . 8
⊢ {𝑋, 𝑖} ∈ Fin |
182 | 181 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → {𝑋, 𝑖} ∈ Fin) |
183 | | simp-4r 783 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑦 ∈ {𝑋, 𝑖}) → 𝑟 ∈ 𝐵) |
184 | 165 | ad4antr 731 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑦 ∈ {𝑋, 𝑖}) → (1r‘𝑅) ∈ 𝐵) |
185 | 183, 184 | ifcld 4573 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑦 ∈ {𝑋, 𝑖}) → if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)) ∈ 𝐵) |
186 | 82 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 0 ∈ 𝐵) |
187 | 180, 161,
182, 185, 186 | mptiffisupp 31893 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) finSupp 0
) |
188 | 68 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝑅 ∈ CMnd) |
189 | 159, 8 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝐼 ⊆ 𝐵) |
190 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝑖 ∈ 𝐼) |
191 | 189, 190 | sseldd 3982 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝑖 ∈ 𝐵) |
192 | 5 | ad3antrrr 729 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝑅 ∈ Ring) |
193 | | simpllr 775 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝑟 ∈ 𝐵) |
194 | 11 | ad3antrrr 729 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝑋 ∈ 𝐵) |
195 | 2, 4, 192, 193, 194 | ringcld 20070 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑟 · 𝑋) ∈ 𝐵) |
196 | 2, 67 | cmncom 19659 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CMnd ∧ 𝑖 ∈ 𝐵 ∧ (𝑟 · 𝑋) ∈ 𝐵) → (𝑖 + (𝑟 · 𝑋)) = ((𝑟 · 𝑋) + 𝑖)) |
197 | 188, 191,
195, 196 | syl3anc 1372 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑖 + (𝑟 · 𝑋)) = ((𝑟 · 𝑋) + 𝑖)) |
198 | 188 | cmnmndd 19665 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝑅 ∈ Mnd) |
199 | | eqid 2733 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑖, 𝑖, 0 )) = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑖, 𝑖, 0 )) |
200 | 191, 2 | eleqtrdi 2844 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝑖 ∈ (Base‘𝑅)) |
201 | 3, 198, 159, 190, 199, 200 | gsummptif1n0 19826 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑖, 𝑖, 0 ))) = 𝑖) |
202 | | fveq2 6888 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑖 → ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) = ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑖)) |
203 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑖 → 𝑥 = 𝑖) |
204 | 202, 203 | oveq12d 7422 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑖 → (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥) = (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑖) · 𝑖)) |
205 | 204 | adantl 483 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥) = (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑖) · 𝑖)) |
206 | | simpr 486 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → 𝑦 = 𝑖) |
207 | | prid2g 4764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ 𝐼 → 𝑖 ∈ {𝑋, 𝑖}) |
208 | 207 | ad5antlr 734 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → 𝑖 ∈ {𝑋, 𝑖}) |
209 | 206, 208 | eqeltrd 2834 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → 𝑦 ∈ {𝑋, 𝑖}) |
210 | 209 | iftrued 4535 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ) = if(𝑦 = 𝑋, 𝑟, (1r‘𝑅))) |
211 | 190 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → 𝑖 ∈ 𝐼) |
212 | 211 | adantr 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → 𝑖 ∈ 𝐼) |
213 | 206, 212 | eqeltrd 2834 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → 𝑦 ∈ 𝐼) |
214 | 105 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → ¬ 𝑋 ∈ 𝐼) |
215 | 214 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → ¬ 𝑋 ∈ 𝐼) |
216 | | nelneq 2858 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝐼 ∧ ¬ 𝑋 ∈ 𝐼) → ¬ 𝑦 = 𝑋) |
217 | 213, 215,
216 | syl2anc 585 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → ¬ 𝑦 = 𝑋) |
218 | 217 | iffalsed 4538 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)) = (1r‘𝑅)) |
219 | 210, 218 | eqtrd 2773 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) ∧ 𝑦 = 𝑖) → if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ) =
(1r‘𝑅)) |
220 | 30, 211 | sselid 3979 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → 𝑖 ∈ (𝐼 ∪ {𝑋})) |
221 | 192 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → 𝑅 ∈ Ring) |
222 | 221, 164 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → (1r‘𝑅) ∈ 𝐵) |
223 | 180, 219,
220, 222 | fvmptd2 7002 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑖) = (1r‘𝑅)) |
224 | 223 | oveq1d 7419 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑖) · 𝑖) = ((1r‘𝑅) · 𝑖)) |
225 | 191 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → 𝑖 ∈ 𝐵) |
226 | 2, 4, 163, 221, 225 | ringlidmd 20079 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → ((1r‘𝑅) · 𝑖) = 𝑖) |
227 | 205, 224,
226 | 3eqtrrd 2778 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 = 𝑖) → 𝑖 = (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)) |
228 | | eleq1w 2817 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑋, 𝑖} ↔ 𝑥 ∈ {𝑋, 𝑖})) |
229 | | eqeq1 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → (𝑦 = 𝑋 ↔ 𝑥 = 𝑋)) |
230 | 229 | ifbid 4550 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑥 → if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)) = if(𝑥 = 𝑋, 𝑟, (1r‘𝑅))) |
231 | 228, 230 | ifbieq1d 4551 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ) = if(𝑥 ∈ {𝑋, 𝑖}, if(𝑥 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) |
232 | | simplr 768 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 𝑥 ∈ 𝐼) |
233 | 30, 232 | sselid 3979 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 𝑥 ∈ (𝐼 ∪ {𝑋})) |
234 | 193 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 𝑟 ∈ 𝐵) |
235 | 165 | ad5antr 733 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → (1r‘𝑅) ∈ 𝐵) |
236 | 234, 235 | ifcld 4573 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → if(𝑥 = 𝑋, 𝑟, (1r‘𝑅)) ∈ 𝐵) |
237 | 186 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 0 ∈ 𝐵) |
238 | 236, 237 | ifcld 4573 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → if(𝑥 ∈ {𝑋, 𝑖}, if(𝑥 = 𝑋, 𝑟, (1r‘𝑅)), 0 ) ∈ 𝐵) |
239 | 180, 231,
233, 238 | fvmptd3 7017 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) = if(𝑥 ∈ {𝑋, 𝑖}, if(𝑥 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) |
240 | 214 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → ¬ 𝑋 ∈ 𝐼) |
241 | | nelne2 3041 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝐼 ∧ ¬ 𝑋 ∈ 𝐼) → 𝑥 ≠ 𝑋) |
242 | 232, 240,
241 | syl2anc 585 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 𝑥 ≠ 𝑋) |
243 | | neqne 2949 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑥 = 𝑖 → 𝑥 ≠ 𝑖) |
244 | 243 | adantl 483 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 𝑥 ≠ 𝑖) |
245 | 242, 244 | nelprd 4658 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → ¬ 𝑥 ∈ {𝑋, 𝑖}) |
246 | 245 | iffalsed 4538 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → if(𝑥 ∈ {𝑋, 𝑖}, if(𝑥 = 𝑋, 𝑟, (1r‘𝑅)), 0 ) = 0 ) |
247 | 239, 246 | eqtrd 2773 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) = 0 ) |
248 | 247 | oveq1d 7419 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥) = ( 0 · 𝑥)) |
249 | 192 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 𝑅 ∈ Ring) |
250 | 189 | ad2antrr 725 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 𝐼 ⊆ 𝐵) |
251 | 250, 232 | sseldd 3982 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 𝑥 ∈ 𝐵) |
252 | 249, 251,
99 | syl2anc 585 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → ( 0 · 𝑥) = 0 ) |
253 | 248, 252 | eqtr2d 2774 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 = 𝑖) → 0 = (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)) |
254 | 227, 253 | ifeqda 4563 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ 𝐼) → if(𝑥 = 𝑖, 𝑖, 0 ) = (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)) |
255 | 254 | mpteq2dva 5247 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑖, 𝑖, 0 )) = (𝑥 ∈ 𝐼 ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))) |
256 | 255 | oveq2d 7420 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑖, 𝑖, 0 ))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)))) |
257 | 201, 256 | eqtr3d 2775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝑖 = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)))) |
258 | | simpr 486 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
259 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → 𝑥 = 𝑋) |
260 | 194 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → 𝑋 ∈ 𝐵) |
261 | | prid1g 4763 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ {𝑋, 𝑖}) |
262 | 260, 261 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → 𝑋 ∈ {𝑋, 𝑖}) |
263 | 259, 262 | eqeltrd 2834 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → 𝑥 ∈ {𝑋, 𝑖}) |
264 | 258, 263 | eqeltrd 2834 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → 𝑦 ∈ {𝑋, 𝑖}) |
265 | 264 | iftrued 4535 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ) = if(𝑦 = 𝑋, 𝑟, (1r‘𝑅))) |
266 | 258, 259 | eqtrd 2773 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑋) |
267 | 266 | iftrued 4535 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)) = 𝑟) |
268 | 265, 267 | eqtrd 2773 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) ∧ 𝑦 = 𝑥) → if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ) = 𝑟) |
269 | | simpr 486 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) |
270 | 116 | ad4antr 731 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) → 𝑋 ∈ {𝑋}) |
271 | 270, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) → 𝑋 ∈ (𝐼 ∪ {𝑋})) |
272 | 269, 271 | eqeltrd 2834 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (𝐼 ∪ {𝑋})) |
273 | 193 | adantr 482 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) → 𝑟 ∈ 𝐵) |
274 | 180, 268,
272, 273 | fvmptd2 7002 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) → ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) = 𝑟) |
275 | 274, 269 | oveq12d 7422 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 = 𝑋) → (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥) = (𝑟 · 𝑋)) |
276 | 2, 198, 194, 195, 275 | gsumsnd 19812 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑅 Σg (𝑥 ∈ {𝑋} ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))) = (𝑟 · 𝑋)) |
277 | 276 | eqcomd 2739 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑟 · 𝑋) = (𝑅 Σg (𝑥 ∈ {𝑋} ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)))) |
278 | 257, 277 | oveq12d 7422 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑖 + (𝑟 · 𝑋)) = ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))) + (𝑅 Σg (𝑥 ∈ {𝑋} ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))))) |
279 | 197, 278 | eqtr3d 2775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → ((𝑟 · 𝑋) + 𝑖) = ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))) + (𝑅 Σg (𝑥 ∈ {𝑋} ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))))) |
280 | | simpr 486 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝐴 = ((𝑟 · 𝑋) + 𝑖)) |
281 | 5 | ad4antr 731 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → 𝑅 ∈ Ring) |
282 | 170 | ffvelcdmda 7082 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) ∈ 𝐵) |
283 | 13 | ad4antr 731 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → (𝐼 ∪ {𝑋}) ⊆ 𝐵) |
284 | | simpr 486 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → 𝑥 ∈ (𝐼 ∪ {𝑋})) |
285 | 283, 284 | sseldd 3982 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → 𝑥 ∈ 𝐵) |
286 | 2, 4, 281, 282, 285 | ringcld 20070 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ (𝐼 ∪ {𝑋})) → (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥) ∈ 𝐵) |
287 | 161 | mptexd 7221 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)) ∈ V) |
288 | | funmpt 6583 |
. . . . . . . . . 10
⊢ Fun
(𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)) |
289 | 288 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → Fun (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))) |
290 | 187 | fsuppimpd 9365 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ) ∈
Fin) |
291 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦(((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) |
292 | 291, 169,
180 | fnmptd 6688 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) Fn (𝐼 ∪ {𝑋})) |
293 | 292 | adantr 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → (𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) Fn (𝐼 ∪ {𝑋})) |
294 | 161 | adantr 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → (𝐼 ∪ {𝑋}) ∈ V) |
295 | 186 | adantr 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → 0 ∈ 𝐵) |
296 | | simpr 486 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) |
297 | 293, 294,
295, 296 | fvdifsupp 31885 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) = 0 ) |
298 | 297 | oveq1d 7419 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥) = ( 0 · 𝑥)) |
299 | 5 | ad4antr 731 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → 𝑅 ∈ Ring) |
300 | 13 | ad4antr 731 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → (𝐼 ∪ {𝑋}) ⊆ 𝐵) |
301 | 296 | eldifad 3959 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → 𝑥 ∈ (𝐼 ∪ {𝑋})) |
302 | 300, 301 | sseldd 3982 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → 𝑥 ∈ 𝐵) |
303 | 299, 302,
99 | syl2anc 585 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → ( 0 · 𝑥) = 0 ) |
304 | 298, 303 | eqtrd 2773 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) ∧ 𝑥 ∈ ((𝐼 ∪ {𝑋}) ∖ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 ))) → (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥) = 0 ) |
305 | 304, 161 | suppss2 8180 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → ((𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)) supp 0 ) ⊆ ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) supp 0 )) |
306 | 290, 305 | ssfid 9263 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → ((𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)) supp 0 ) ∈
Fin) |
307 | 287, 186,
289, 306 | isfsuppd 9362 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)) finSupp 0 ) |
308 | 214, 107 | sylibr 233 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝐼 ∩ {𝑋}) = ∅) |
309 | | eqidd 2734 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝐼 ∪ {𝑋}) = (𝐼 ∪ {𝑋})) |
310 | 2, 3, 67, 188, 161, 286, 307, 308, 309 | gsumsplit2 19789 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))) = ((𝑅 Σg (𝑥 ∈ 𝐼 ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))) + (𝑅 Σg (𝑥 ∈ {𝑋} ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))))) |
311 | 279, 280,
310 | 3eqtr4d 2783 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥)))) |
312 | 187, 311 | jca 513 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → ((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 )) finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ (((𝑦 ∈ (𝐼 ∪ {𝑋}) ↦ if(𝑦 ∈ {𝑋, 𝑖}, if(𝑦 = 𝑋, 𝑟, (1r‘𝑅)), 0 ))‘𝑥) · 𝑥))))) |
313 | 171, 179,
312 | rspcedvd 3614 |
. . . 4
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) ∧ 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → ∃𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))(𝑎 finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))))) |
314 | 313 | r19.29ffa 31691 |
. . 3
⊢ ((𝜑 ∧ ∃𝑟 ∈ 𝐵 ∃𝑖 ∈ 𝐼 𝐴 = ((𝑟 · 𝑋) + 𝑖)) → ∃𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))(𝑎 finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥))))) |
315 | 157, 314 | impbida 800 |
. 2
⊢ (𝜑 → (∃𝑎 ∈ (𝐵 ↑m (𝐼 ∪ {𝑋}))(𝑎 finSupp 0 ∧ 𝐴 = (𝑅 Σg (𝑥 ∈ (𝐼 ∪ {𝑋}) ↦ ((𝑎‘𝑥) · 𝑥)))) ↔ ∃𝑟 ∈ 𝐵 ∃𝑖 ∈ 𝐼 𝐴 = ((𝑟 · 𝑋) + 𝑖))) |
316 | 14, 315 | bitrd 279 |
1
⊢ (𝜑 → (𝐴 ∈ (𝑁‘(𝐼 ∪ {𝑋})) ↔ ∃𝑟 ∈ 𝐵 ∃𝑖 ∈ 𝐼 𝐴 = ((𝑟 · 𝑋) + 𝑖))) |