Step | Hyp | Ref
| Expression |
1 | | nna4b4nsq.c |
. 2
⊢ (𝜑 → 𝐶 ∈ ℕ) |
2 | | oveq1 7171 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑎↑4) = (𝐴↑4)) |
3 | 2 | oveq1d 7179 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → ((𝑎↑4) + (𝑏↑4)) = ((𝐴↑4) + (𝑏↑4))) |
4 | 3 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (((𝑎↑4) + (𝑏↑4)) = (𝑐↑2) ↔ ((𝐴↑4) + (𝑏↑4)) = (𝑐↑2))) |
5 | | oveq1 7171 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝑏↑4) = (𝐵↑4)) |
6 | 5 | oveq2d 7180 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((𝐴↑4) + (𝑏↑4)) = ((𝐴↑4) + (𝐵↑4))) |
7 | 6 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (((𝐴↑4) + (𝑏↑4)) = (𝑐↑2) ↔ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2))) |
8 | | nna4b4nsq.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℕ) |
9 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℕ) ∧ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)) → 𝐴 ∈ ℕ) |
10 | | nna4b4nsq.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℕ) |
11 | 10 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℕ) ∧ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)) → 𝐵 ∈ ℕ) |
12 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ ℕ) ∧ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)) → ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)) |
13 | 4, 7, 9, 11, 12 | 2rspcedvdw 39756 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ ℕ) ∧ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)) |
14 | 13 | ex 416 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ ℕ) → (((𝐴↑4) + (𝐵↑4)) = (𝑐↑2) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) |
15 | 14 | ss2rabdv 3963 |
. . . 4
⊢ (𝜑 → {𝑐 ∈ ℕ ∣ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)} ⊆ {𝑐 ∈ ℕ ∣ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)}) |
16 | | oveq1 7171 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑖 → (𝑓↑2) = (𝑖↑2)) |
17 | 16 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑖 → (((𝑔↑4) + (ℎ↑4)) = (𝑓↑2) ↔ ((𝑔↑4) + (ℎ↑4)) = (𝑖↑2))) |
18 | 17 | anbi2d 632 |
. . . . . . . . 9
⊢ (𝑓 = 𝑖 → (((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)) ↔ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑖↑2)))) |
19 | 18 | anbi2d 632 |
. . . . . . . 8
⊢ (𝑓 = 𝑖 → ((¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))) ↔ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑖↑2))))) |
20 | 19 | 2rexbidv 3209 |
. . . . . . 7
⊢ (𝑓 = 𝑖 → (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))) ↔ ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑖↑2))))) |
21 | | oveq1 7171 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑙 → (𝑓↑2) = (𝑙↑2)) |
22 | 21 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑙 → (((𝑔↑4) + (ℎ↑4)) = (𝑓↑2) ↔ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) |
23 | 22 | anbi2d 632 |
. . . . . . . . 9
⊢ (𝑓 = 𝑙 → (((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)) ↔ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2)))) |
24 | 23 | anbi2d 632 |
. . . . . . . 8
⊢ (𝑓 = 𝑙 → ((¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))) ↔ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))))) |
25 | 24 | 2rexbidv 3209 |
. . . . . . 7
⊢ (𝑓 = 𝑙 → (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))) ↔ ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))))) |
26 | | nnuz 12356 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
27 | 26 | eqimssi 3933 |
. . . . . . . 8
⊢ ℕ
⊆ (ℤ≥‘1) |
28 | 27 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℕ ⊆
(ℤ≥‘1)) |
29 | | breq2 5031 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑗 → (2 ∥ 𝑔 ↔ 2 ∥ 𝑗)) |
30 | 29 | notbid 321 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑗 → (¬ 2 ∥ 𝑔 ↔ ¬ 2 ∥ 𝑗)) |
31 | | oveq1 7171 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑗 → (𝑔 gcd ℎ) = (𝑗 gcd ℎ)) |
32 | 31 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑗 → ((𝑔 gcd ℎ) = 1 ↔ (𝑗 gcd ℎ) = 1)) |
33 | | oveq1 7171 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑗 → (𝑔↑4) = (𝑗↑4)) |
34 | 33 | oveq1d 7179 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑗 → ((𝑔↑4) + (ℎ↑4)) = ((𝑗↑4) + (ℎ↑4))) |
35 | 34 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑗 → (((𝑔↑4) + (ℎ↑4)) = (𝑖↑2) ↔ ((𝑗↑4) + (ℎ↑4)) = (𝑖↑2))) |
36 | 32, 35 | anbi12d 634 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑗 → (((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑖↑2)) ↔ ((𝑗 gcd ℎ) = 1 ∧ ((𝑗↑4) + (ℎ↑4)) = (𝑖↑2)))) |
37 | 30, 36 | anbi12d 634 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑗 → ((¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑖↑2))) ↔ (¬ 2 ∥ 𝑗 ∧ ((𝑗 gcd ℎ) = 1 ∧ ((𝑗↑4) + (ℎ↑4)) = (𝑖↑2))))) |
38 | | oveq2 7172 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑘 → (𝑗 gcd ℎ) = (𝑗 gcd 𝑘)) |
39 | 38 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑘 → ((𝑗 gcd ℎ) = 1 ↔ (𝑗 gcd 𝑘) = 1)) |
40 | | oveq1 7171 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑘 → (ℎ↑4) = (𝑘↑4)) |
41 | 40 | oveq2d 7180 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑘 → ((𝑗↑4) + (ℎ↑4)) = ((𝑗↑4) + (𝑘↑4))) |
42 | 41 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑘 → (((𝑗↑4) + (ℎ↑4)) = (𝑖↑2) ↔ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2))) |
43 | 39, 42 | anbi12d 634 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑘 → (((𝑗 gcd ℎ) = 1 ∧ ((𝑗↑4) + (ℎ↑4)) = (𝑖↑2)) ↔ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)))) |
44 | 43 | anbi2d 632 |
. . . . . . . . . 10
⊢ (ℎ = 𝑘 → ((¬ 2 ∥ 𝑗 ∧ ((𝑗 gcd ℎ) = 1 ∧ ((𝑗↑4) + (ℎ↑4)) = (𝑖↑2))) ↔ (¬ 2 ∥ 𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2))))) |
45 | 37, 44 | cbvrex2vw 3362 |
. . . . . . . . 9
⊢
(∃𝑔 ∈
ℕ ∃ℎ ∈
ℕ (¬ 2 ∥ 𝑔
∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑖↑2))) ↔ ∃𝑗 ∈ ℕ ∃𝑘 ∈ ℕ (¬ 2 ∥ 𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)))) |
46 | | simplrl 777 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) ∧ (¬ 2 ∥
𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)))) → 𝑗 ∈ ℕ) |
47 | | simplrr 778 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) ∧ (¬ 2 ∥
𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)))) → 𝑘 ∈ ℕ) |
48 | | simpllr 776 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) ∧ (¬ 2 ∥
𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)))) → 𝑖 ∈ ℕ) |
49 | | simprl 771 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) ∧ (¬ 2 ∥
𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)))) → ¬ 2 ∥ 𝑗) |
50 | | simprrl 781 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) ∧ (¬ 2 ∥
𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)))) → (𝑗 gcd 𝑘) = 1) |
51 | | simprrr 782 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) ∧ (¬ 2 ∥
𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)))) → ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)) |
52 | 46, 47, 48, 49, 50, 51 | flt4lem7 40052 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) ∧ (¬ 2 ∥
𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2)))) → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝑖)) |
53 | 52 | ex 416 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → ((¬ 2 ∥
𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2))) → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝑖))) |
54 | 53 | rexlimdvva 3203 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (∃𝑗 ∈ ℕ ∃𝑘 ∈ ℕ (¬ 2 ∥
𝑗 ∧ ((𝑗 gcd 𝑘) = 1 ∧ ((𝑗↑4) + (𝑘↑4)) = (𝑖↑2))) → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝑖))) |
55 | 45, 54 | syl5bi 245 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥
𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑖↑2))) → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝑖))) |
56 | 55 | impr 458 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥
𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑖↑2))))) → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝑖)) |
57 | 20, 25, 28, 56 | infdesc 40036 |
. . . . . 6
⊢ (𝜑 → {𝑓 ∈ ℕ ∣ ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥
𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)))} = ∅) |
58 | | breq2 5031 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑑 → (2 ∥ 𝑔 ↔ 2 ∥ 𝑑)) |
59 | 58 | notbid 321 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑑 → (¬ 2 ∥ 𝑔 ↔ ¬ 2 ∥ 𝑑)) |
60 | | oveq1 7171 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑑 → (𝑔 gcd ℎ) = (𝑑 gcd ℎ)) |
61 | 60 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑑 → ((𝑔 gcd ℎ) = 1 ↔ (𝑑 gcd ℎ) = 1)) |
62 | | oveq1 7171 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑑 → (𝑔↑4) = (𝑑↑4)) |
63 | 62 | oveq1d 7179 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑑 → ((𝑔↑4) + (ℎ↑4)) = ((𝑑↑4) + (ℎ↑4))) |
64 | 63 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑑 → (((𝑔↑4) + (ℎ↑4)) = (𝑓↑2) ↔ ((𝑑↑4) + (ℎ↑4)) = (𝑓↑2))) |
65 | 61, 64 | anbi12d 634 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑑 → (((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)) ↔ ((𝑑 gcd ℎ) = 1 ∧ ((𝑑↑4) + (ℎ↑4)) = (𝑓↑2)))) |
66 | 59, 65 | anbi12d 634 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑑 → ((¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))) ↔ (¬ 2 ∥ 𝑑 ∧ ((𝑑 gcd ℎ) = 1 ∧ ((𝑑↑4) + (ℎ↑4)) = (𝑓↑2))))) |
67 | | oveq2 7172 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑒 → (𝑑 gcd ℎ) = (𝑑 gcd 𝑒)) |
68 | 67 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑒 → ((𝑑 gcd ℎ) = 1 ↔ (𝑑 gcd 𝑒) = 1)) |
69 | | oveq1 7171 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝑒 → (ℎ↑4) = (𝑒↑4)) |
70 | 69 | oveq2d 7180 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑒 → ((𝑑↑4) + (ℎ↑4)) = ((𝑑↑4) + (𝑒↑4))) |
71 | 70 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑒 → (((𝑑↑4) + (ℎ↑4)) = (𝑓↑2) ↔ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) |
72 | 68, 71 | anbi12d 634 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑒 → (((𝑑 gcd ℎ) = 1 ∧ ((𝑑↑4) + (ℎ↑4)) = (𝑓↑2)) ↔ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)))) |
73 | 72 | anbi2d 632 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑒 → ((¬ 2 ∥ 𝑑 ∧ ((𝑑 gcd ℎ) = 1 ∧ ((𝑑↑4) + (ℎ↑4)) = (𝑓↑2))) ↔ (¬ 2 ∥ 𝑑 ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))))) |
74 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) → 𝑑 ∈ ℕ) |
75 | 74 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑑) → 𝑑 ∈ ℕ) |
76 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) → 𝑒 ∈ ℕ) |
77 | 76 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑑) → 𝑒 ∈ ℕ) |
78 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑑) → ¬ 2 ∥ 𝑑) |
79 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑑) → ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) |
80 | 78, 79 | jca 515 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑑) → (¬ 2 ∥ 𝑑 ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)))) |
81 | 66, 73, 75, 77, 80 | 2rspcedvdw 39756 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑑) → ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥
𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)))) |
82 | | breq2 5031 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑒 → (2 ∥ 𝑔 ↔ 2 ∥ 𝑒)) |
83 | 82 | notbid 321 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑒 → (¬ 2 ∥ 𝑔 ↔ ¬ 2 ∥ 𝑒)) |
84 | | oveq1 7171 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑒 → (𝑔 gcd ℎ) = (𝑒 gcd ℎ)) |
85 | 84 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑒 → ((𝑔 gcd ℎ) = 1 ↔ (𝑒 gcd ℎ) = 1)) |
86 | | oveq1 7171 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑒 → (𝑔↑4) = (𝑒↑4)) |
87 | 86 | oveq1d 7179 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑒 → ((𝑔↑4) + (ℎ↑4)) = ((𝑒↑4) + (ℎ↑4))) |
88 | 87 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑒 → (((𝑔↑4) + (ℎ↑4)) = (𝑓↑2) ↔ ((𝑒↑4) + (ℎ↑4)) = (𝑓↑2))) |
89 | 85, 88 | anbi12d 634 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑒 → (((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)) ↔ ((𝑒 gcd ℎ) = 1 ∧ ((𝑒↑4) + (ℎ↑4)) = (𝑓↑2)))) |
90 | 83, 89 | anbi12d 634 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑒 → ((¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))) ↔ (¬ 2 ∥ 𝑒 ∧ ((𝑒 gcd ℎ) = 1 ∧ ((𝑒↑4) + (ℎ↑4)) = (𝑓↑2))))) |
91 | | oveq2 7172 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑑 → (𝑒 gcd ℎ) = (𝑒 gcd 𝑑)) |
92 | 91 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑑 → ((𝑒 gcd ℎ) = 1 ↔ (𝑒 gcd 𝑑) = 1)) |
93 | | oveq1 7171 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝑑 → (ℎ↑4) = (𝑑↑4)) |
94 | 93 | oveq2d 7180 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑑 → ((𝑒↑4) + (ℎ↑4)) = ((𝑒↑4) + (𝑑↑4))) |
95 | 94 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = 𝑑 → (((𝑒↑4) + (ℎ↑4)) = (𝑓↑2) ↔ ((𝑒↑4) + (𝑑↑4)) = (𝑓↑2))) |
96 | 92, 95 | anbi12d 634 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = 𝑑 → (((𝑒 gcd ℎ) = 1 ∧ ((𝑒↑4) + (ℎ↑4)) = (𝑓↑2)) ↔ ((𝑒 gcd 𝑑) = 1 ∧ ((𝑒↑4) + (𝑑↑4)) = (𝑓↑2)))) |
97 | 96 | anbi2d 632 |
. . . . . . . . . . . . . 14
⊢ (ℎ = 𝑑 → ((¬ 2 ∥ 𝑒 ∧ ((𝑒 gcd ℎ) = 1 ∧ ((𝑒↑4) + (ℎ↑4)) = (𝑓↑2))) ↔ (¬ 2 ∥ 𝑒 ∧ ((𝑒 gcd 𝑑) = 1 ∧ ((𝑒↑4) + (𝑑↑4)) = (𝑓↑2))))) |
98 | 76 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → 𝑒 ∈ ℕ) |
99 | 74 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → 𝑑 ∈ ℕ) |
100 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → ¬ 2 ∥ 𝑒) |
101 | 98 | nnzd 12160 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → 𝑒 ∈ ℤ) |
102 | 99 | nnzd 12160 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → 𝑑 ∈ ℤ) |
103 | 101, 102 | gcdcomd 15950 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → (𝑒 gcd 𝑑) = (𝑑 gcd 𝑒)) |
104 | | simplrl 777 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → (𝑑 gcd 𝑒) = 1) |
105 | 103, 104 | eqtrd 2773 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → (𝑒 gcd 𝑑) = 1) |
106 | | 4nn0 11988 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 4 ∈
ℕ0 |
107 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → 4 ∈
ℕ0) |
108 | 98, 107 | nnexpcld 13691 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → (𝑒↑4) ∈ ℕ) |
109 | 108 | nncnd 11725 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → (𝑒↑4) ∈ ℂ) |
110 | 99, 107 | nnexpcld 13691 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → (𝑑↑4) ∈ ℕ) |
111 | 110 | nncnd 11725 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → (𝑑↑4) ∈ ℂ) |
112 | 109, 111 | addcomd 10913 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → ((𝑒↑4) + (𝑑↑4)) = ((𝑑↑4) + (𝑒↑4))) |
113 | | simplrr 778 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)) |
114 | 112, 113 | eqtrd 2773 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → ((𝑒↑4) + (𝑑↑4)) = (𝑓↑2)) |
115 | 100, 105,
114 | jca32 519 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → (¬ 2 ∥ 𝑒 ∧ ((𝑒 gcd 𝑑) = 1 ∧ ((𝑒↑4) + (𝑑↑4)) = (𝑓↑2)))) |
116 | 90, 97, 98, 99, 115 | 2rspcedvdw 39756 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ ¬ 2 ∥ 𝑒) → ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥
𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)))) |
117 | 74 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → 𝑑 ∈ ℕ) |
118 | 117 | nnsqcld 13690 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → (𝑑↑2) ∈ ℕ) |
119 | 76 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → 𝑒 ∈ ℕ) |
120 | 119 | nnsqcld 13690 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → (𝑒↑2) ∈ ℕ) |
121 | | simp-4r 784 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → 𝑓 ∈ ℕ) |
122 | | 2z 12088 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℤ |
123 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) → 𝑑 ∈ ℕ) |
124 | 123 | nnzd 12160 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) → 𝑑 ∈ ℤ) |
125 | | 2nn 11782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℕ |
126 | 125 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) → 2 ∈
ℕ) |
127 | | dvdsexp2im 15765 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℤ ∧ 𝑑
∈ ℤ ∧ 2 ∈ ℕ) → (2 ∥ 𝑑 → 2 ∥ (𝑑↑2))) |
128 | 122, 124,
126, 127 | mp3an2i 1467 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) → (2 ∥ 𝑑 → 2 ∥ (𝑑↑2))) |
129 | 128 | imp 410 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → 2 ∥ (𝑑↑2)) |
130 | | 2nn0 11986 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℕ0 |
131 | 130 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → 2 ∈
ℕ0) |
132 | 117 | nncnd 11725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → 𝑑 ∈ ℂ) |
133 | 132 | flt4lem 40038 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → (𝑑↑4) = ((𝑑↑2)↑2)) |
134 | 119 | nncnd 11725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → 𝑒 ∈ ℂ) |
135 | 134 | flt4lem 40038 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → (𝑒↑4) = ((𝑒↑2)↑2)) |
136 | 133, 135 | oveq12d 7182 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → ((𝑑↑4) + (𝑒↑4)) = (((𝑑↑2)↑2) + ((𝑒↑2)↑2))) |
137 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)) |
138 | 136, 137 | eqtr3d 2775 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → (((𝑑↑2)↑2) + ((𝑒↑2)↑2)) = (𝑓↑2)) |
139 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → (𝑑 gcd 𝑒) = 1) |
140 | 125 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → 2 ∈ ℕ) |
141 | | rppwr 15998 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ∧ 2 ∈
ℕ) → ((𝑑 gcd
𝑒) = 1 → ((𝑑↑2) gcd (𝑒↑2)) = 1)) |
142 | 117, 119,
140, 141 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → ((𝑑 gcd 𝑒) = 1 → ((𝑑↑2) gcd (𝑒↑2)) = 1)) |
143 | 139, 142 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → ((𝑑↑2) gcd (𝑒↑2)) = 1) |
144 | 118, 120,
121, 131, 138, 143 | fltaccoprm 40033 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → ((𝑑↑2) gcd 𝑓) = 1) |
145 | 118, 120,
121, 129, 144, 138 | flt4lem2 40040 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → ¬ 2 ∥ (𝑒↑2)) |
146 | 119 | nnzd 12160 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → 𝑒 ∈ ℤ) |
147 | | dvdsexp2im 15765 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℤ ∧ 𝑒
∈ ℤ ∧ 2 ∈ ℕ) → (2 ∥ 𝑒 → 2 ∥ (𝑒↑2))) |
148 | 122, 146,
140, 147 | mp3an2i 1467 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → (2 ∥ 𝑒 → 2 ∥ (𝑒↑2))) |
149 | 145, 148 | mtod 201 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) ∧ 2 ∥ 𝑑) → ¬ 2 ∥ 𝑒) |
150 | 149 | ex 416 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) → (2 ∥ 𝑑 → ¬ 2 ∥ 𝑒)) |
151 | | imor 852 |
. . . . . . . . . . . . . 14
⊢ ((2
∥ 𝑑 → ¬ 2
∥ 𝑒) ↔ (¬ 2
∥ 𝑑 ∨ ¬ 2
∥ 𝑒)) |
152 | 150, 151 | sylib 221 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) → (¬ 2 ∥ 𝑑 ∨ ¬ 2 ∥ 𝑒)) |
153 | 81, 116, 152 | mpjaodan 958 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) ∧ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) → ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)))) |
154 | 153 | ex 416 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ)) → (((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)) → ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))))) |
155 | 154 | rexlimdvva 3203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ ℕ) → (∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)) → ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))))) |
156 | 155 | reximdva 3183 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑓 ∈ ℕ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)) → ∃𝑓 ∈ ℕ ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))))) |
157 | 156 | con3d 155 |
. . . . . . . 8
⊢ (𝜑 → (¬ ∃𝑓 ∈ ℕ ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥
𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))) → ¬ ∃𝑓 ∈ ℕ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)))) |
158 | | ralnex 3148 |
. . . . . . . 8
⊢
(∀𝑓 ∈
ℕ ¬ ∃𝑔
∈ ℕ ∃ℎ
∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))) ↔ ¬ ∃𝑓 ∈ ℕ ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥
𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)))) |
159 | | ralnex 3148 |
. . . . . . . 8
⊢
(∀𝑓 ∈
ℕ ¬ ∃𝑑
∈ ℕ ∃𝑒
∈ ℕ ((𝑑 gcd
𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)) ↔ ¬ ∃𝑓 ∈ ℕ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) |
160 | 157, 158,
159 | 3imtr4g 299 |
. . . . . . 7
⊢ (𝜑 → (∀𝑓 ∈ ℕ ¬
∃𝑔 ∈ ℕ
∃ℎ ∈ ℕ
(¬ 2 ∥ 𝑔 ∧
((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2))) → ∀𝑓 ∈ ℕ ¬ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)))) |
161 | | rabeq0 4270 |
. . . . . . 7
⊢ ({𝑓 ∈ ℕ ∣
∃𝑔 ∈ ℕ
∃ℎ ∈ ℕ
(¬ 2 ∥ 𝑔 ∧
((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)))} = ∅ ↔ ∀𝑓 ∈ ℕ ¬
∃𝑔 ∈ ℕ
∃ℎ ∈ ℕ
(¬ 2 ∥ 𝑔 ∧
((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)))) |
162 | | rabeq0 4270 |
. . . . . . 7
⊢ ({𝑓 ∈ ℕ ∣
∃𝑑 ∈ ℕ
∃𝑒 ∈ ℕ
((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))} = ∅ ↔ ∀𝑓 ∈ ℕ ¬
∃𝑑 ∈ ℕ
∃𝑒 ∈ ℕ
((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) |
163 | 160, 161,
162 | 3imtr4g 299 |
. . . . . 6
⊢ (𝜑 → ({𝑓 ∈ ℕ ∣ ∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥
𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑓↑2)))} = ∅ → {𝑓 ∈ ℕ ∣
∃𝑑 ∈ ℕ
∃𝑒 ∈ ℕ
((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))} = ∅)) |
164 | 57, 163 | mpd 15 |
. . . . 5
⊢ (𝜑 → {𝑓 ∈ ℕ ∣ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))} = ∅) |
165 | | oveq1 7171 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑐 / ((𝑎 gcd 𝑏)↑2)) → (𝑓↑2) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2)) |
166 | 165 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑐 / ((𝑎 gcd 𝑏)↑2)) → (((𝑑↑4) + (𝑒↑4)) = (𝑓↑2) ↔ ((𝑑↑4) + (𝑒↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2))) |
167 | 166 | anbi2d 632 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑐 / ((𝑎 gcd 𝑏)↑2)) → (((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)) ↔ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2)))) |
168 | | oveq1 7171 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (𝑎 / (𝑎 gcd 𝑏)) → (𝑑 gcd 𝑒) = ((𝑎 / (𝑎 gcd 𝑏)) gcd 𝑒)) |
169 | 168 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑑 = (𝑎 / (𝑎 gcd 𝑏)) → ((𝑑 gcd 𝑒) = 1 ↔ ((𝑎 / (𝑎 gcd 𝑏)) gcd 𝑒) = 1)) |
170 | | oveq1 7171 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = (𝑎 / (𝑎 gcd 𝑏)) → (𝑑↑4) = ((𝑎 / (𝑎 gcd 𝑏))↑4)) |
171 | 170 | oveq1d 7179 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (𝑎 / (𝑎 gcd 𝑏)) → ((𝑑↑4) + (𝑒↑4)) = (((𝑎 / (𝑎 gcd 𝑏))↑4) + (𝑒↑4))) |
172 | 171 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑑 = (𝑎 / (𝑎 gcd 𝑏)) → (((𝑑↑4) + (𝑒↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2) ↔ (((𝑎 / (𝑎 gcd 𝑏))↑4) + (𝑒↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2))) |
173 | 169, 172 | anbi12d 634 |
. . . . . . . . . . 11
⊢ (𝑑 = (𝑎 / (𝑎 gcd 𝑏)) → (((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2)) ↔ (((𝑎 / (𝑎 gcd 𝑏)) gcd 𝑒) = 1 ∧ (((𝑎 / (𝑎 gcd 𝑏))↑4) + (𝑒↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2)))) |
174 | | oveq2 7172 |
. . . . . . . . . . . . 13
⊢ (𝑒 = (𝑏 / (𝑎 gcd 𝑏)) → ((𝑎 / (𝑎 gcd 𝑏)) gcd 𝑒) = ((𝑎 / (𝑎 gcd 𝑏)) gcd (𝑏 / (𝑎 gcd 𝑏)))) |
175 | 174 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑒 = (𝑏 / (𝑎 gcd 𝑏)) → (((𝑎 / (𝑎 gcd 𝑏)) gcd 𝑒) = 1 ↔ ((𝑎 / (𝑎 gcd 𝑏)) gcd (𝑏 / (𝑎 gcd 𝑏))) = 1)) |
176 | | oveq1 7171 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = (𝑏 / (𝑎 gcd 𝑏)) → (𝑒↑4) = ((𝑏 / (𝑎 gcd 𝑏))↑4)) |
177 | 176 | oveq2d 7180 |
. . . . . . . . . . . . 13
⊢ (𝑒 = (𝑏 / (𝑎 gcd 𝑏)) → (((𝑎 / (𝑎 gcd 𝑏))↑4) + (𝑒↑4)) = (((𝑎 / (𝑎 gcd 𝑏))↑4) + ((𝑏 / (𝑎 gcd 𝑏))↑4))) |
178 | 177 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑒 = (𝑏 / (𝑎 gcd 𝑏)) → ((((𝑎 / (𝑎 gcd 𝑏))↑4) + (𝑒↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2) ↔ (((𝑎 / (𝑎 gcd 𝑏))↑4) + ((𝑏 / (𝑎 gcd 𝑏))↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2))) |
179 | 175, 178 | anbi12d 634 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑏 / (𝑎 gcd 𝑏)) → ((((𝑎 / (𝑎 gcd 𝑏)) gcd 𝑒) = 1 ∧ (((𝑎 / (𝑎 gcd 𝑏))↑4) + (𝑒↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2)) ↔ (((𝑎 / (𝑎 gcd 𝑏)) gcd (𝑏 / (𝑎 gcd 𝑏))) = 1 ∧ (((𝑎 / (𝑎 gcd 𝑏))↑4) + ((𝑏 / (𝑎 gcd 𝑏))↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2)))) |
180 | | simplrr 778 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → 𝑎 ∈ ℕ) |
181 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → 𝑏 ∈ ℕ) |
182 | | simplrl 777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → 𝑐 ∈ ℕ) |
183 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)) |
184 | 180, 181,
182, 183 | flt4lem6 40051 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → (((𝑎 / (𝑎 gcd 𝑏)) ∈ ℕ ∧ (𝑏 / (𝑎 gcd 𝑏)) ∈ ℕ ∧ (𝑐 / ((𝑎 gcd 𝑏)↑2)) ∈ ℕ) ∧ (((𝑎 / (𝑎 gcd 𝑏))↑4) + ((𝑏 / (𝑎 gcd 𝑏))↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2))) |
185 | 184 | simpld 498 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → ((𝑎 / (𝑎 gcd 𝑏)) ∈ ℕ ∧ (𝑏 / (𝑎 gcd 𝑏)) ∈ ℕ ∧ (𝑐 / ((𝑎 gcd 𝑏)↑2)) ∈ ℕ)) |
186 | 185 | simp3d 1145 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → (𝑐 / ((𝑎 gcd 𝑏)↑2)) ∈ ℕ) |
187 | 185 | simp1d 1143 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → (𝑎 / (𝑎 gcd 𝑏)) ∈ ℕ) |
188 | 185 | simp2d 1144 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → (𝑏 / (𝑎 gcd 𝑏)) ∈ ℕ) |
189 | 180 | nnzd 12160 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → 𝑎 ∈ ℤ) |
190 | 181 | nnzd 12160 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → 𝑏 ∈ ℤ) |
191 | 181 | nnne0d 11759 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → 𝑏 ≠ 0) |
192 | | divgcdcoprm0 16099 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑏 ≠ 0) → ((𝑎 / (𝑎 gcd 𝑏)) gcd (𝑏 / (𝑎 gcd 𝑏))) = 1) |
193 | 189, 190,
191, 192 | syl3anc 1372 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → ((𝑎 / (𝑎 gcd 𝑏)) gcd (𝑏 / (𝑎 gcd 𝑏))) = 1) |
194 | 184 | simprd 499 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → (((𝑎 / (𝑎 gcd 𝑏))↑4) + ((𝑏 / (𝑎 gcd 𝑏))↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2)) |
195 | 193, 194 | jca 515 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → (((𝑎 / (𝑎 gcd 𝑏)) gcd (𝑏 / (𝑎 gcd 𝑏))) = 1 ∧ (((𝑎 / (𝑎 gcd 𝑏))↑4) + ((𝑏 / (𝑎 gcd 𝑏))↑4)) = ((𝑐 / ((𝑎 gcd 𝑏)↑2))↑2))) |
196 | 167, 173,
179, 186, 187, 188, 195 | 3rspcedvdw 39757 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) ∧ (𝑏 ∈ ℕ ∧ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) → ∃𝑓 ∈ ℕ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))) |
197 | 196 | rexlimdvaa 3194 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ)) → (∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2) → ∃𝑓 ∈ ℕ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)))) |
198 | 197 | rexlimdvva 3203 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑐 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2) → ∃𝑓 ∈ ℕ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)))) |
199 | 198 | con3d 155 |
. . . . . . 7
⊢ (𝜑 → (¬ ∃𝑓 ∈ ℕ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)) → ¬ ∃𝑐 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) |
200 | | ralnex 3148 |
. . . . . . 7
⊢
(∀𝑐 ∈
ℕ ¬ ∃𝑎
∈ ℕ ∃𝑏
∈ ℕ ((𝑎↑4)
+ (𝑏↑4)) = (𝑐↑2) ↔ ¬
∃𝑐 ∈ ℕ
∃𝑎 ∈ ℕ
∃𝑏 ∈ ℕ
((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)) |
201 | 199, 159,
200 | 3imtr4g 299 |
. . . . . 6
⊢ (𝜑 → (∀𝑓 ∈ ℕ ¬
∃𝑑 ∈ ℕ
∃𝑒 ∈ ℕ
((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2)) → ∀𝑐 ∈ ℕ ¬ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2))) |
202 | | rabeq0 4270 |
. . . . . 6
⊢ ({𝑐 ∈ ℕ ∣
∃𝑎 ∈ ℕ
∃𝑏 ∈ ℕ
((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)} = ∅ ↔ ∀𝑐 ∈ ℕ ¬
∃𝑎 ∈ ℕ
∃𝑏 ∈ ℕ
((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)) |
203 | 201, 162,
202 | 3imtr4g 299 |
. . . . 5
⊢ (𝜑 → ({𝑓 ∈ ℕ ∣ ∃𝑑 ∈ ℕ ∃𝑒 ∈ ℕ ((𝑑 gcd 𝑒) = 1 ∧ ((𝑑↑4) + (𝑒↑4)) = (𝑓↑2))} = ∅ → {𝑐 ∈ ℕ ∣
∃𝑎 ∈ ℕ
∃𝑏 ∈ ℕ
((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)} = ∅)) |
204 | 164, 203 | mpd 15 |
. . . 4
⊢ (𝜑 → {𝑐 ∈ ℕ ∣ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)} = ∅) |
205 | | sseq0 4285 |
. . . 4
⊢ (({𝑐 ∈ ℕ ∣ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)} ⊆ {𝑐 ∈ ℕ ∣ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)} ∧ {𝑐 ∈ ℕ ∣ ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑4) + (𝑏↑4)) = (𝑐↑2)} = ∅) → {𝑐 ∈ ℕ ∣ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)} = ∅) |
206 | 15, 204, 205 | syl2anc 587 |
. . 3
⊢ (𝜑 → {𝑐 ∈ ℕ ∣ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)} = ∅) |
207 | | rabeq0 4270 |
. . 3
⊢ ({𝑐 ∈ ℕ ∣ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)} = ∅ ↔ ∀𝑐 ∈ ℕ ¬ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)) |
208 | 206, 207 | sylib 221 |
. 2
⊢ (𝜑 → ∀𝑐 ∈ ℕ ¬ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2)) |
209 | | oveq1 7171 |
. . . . 5
⊢ (𝑐 = 𝐶 → (𝑐↑2) = (𝐶↑2)) |
210 | 209 | eqeq2d 2749 |
. . . 4
⊢ (𝑐 = 𝐶 → (((𝐴↑4) + (𝐵↑4)) = (𝑐↑2) ↔ ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))) |
211 | 210 | necon3bbid 2971 |
. . 3
⊢ (𝑐 = 𝐶 → (¬ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2) ↔ ((𝐴↑4) + (𝐵↑4)) ≠ (𝐶↑2))) |
212 | 211 | rspcv 3519 |
. 2
⊢ (𝐶 ∈ ℕ →
(∀𝑐 ∈ ℕ
¬ ((𝐴↑4) + (𝐵↑4)) = (𝑐↑2) → ((𝐴↑4) + (𝐵↑4)) ≠ (𝐶↑2))) |
213 | 1, 208, 212 | sylc 65 |
1
⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) ≠ (𝐶↑2)) |