![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
2 | 1 | rspcev 3613 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
3 | 2 | anim2i 618 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
4 | 3 | 3impb 1116 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
6 | 5 | rexbidv 3179 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
7 | 6 | rspcev 3613 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 |
This theorem is referenced by: 2rspcedvdw 3626 rspc3ev 3629 opelxp 5713 fprb 7195 f1prex 7282 nf1const 7302 rspceov 7456 erov 8808 ralxpmap 8890 2dom 9030 elfiun 9425 dffi3 9426 ixpiunwdom 9585 1re 11214 hashdmpropge2 14444 wrdl2exs2 14897 ello12r 15461 ello1d 15467 elo12r 15472 o1lo1 15481 addcn2 15538 mulcn2 15540 bezoutlem3 16483 bezout 16485 pythagtriplem18 16765 pczpre 16780 pcdiv 16785 4sqlem3 16883 4sqlem4 16885 4sqlem12 16889 vdwlem1 16914 vdwlem6 16919 vdwlem8 16921 vdwlem12 16925 vdwlem13 16926 0ram 16953 ramz2 16957 cat1lem 18046 sgrp2rid2ex 18808 pmtr3ncom 19343 psgnunilem1 19361 irredn0 20237 isnzr2 20297 hausnei2 22857 cnhaus 22858 dishaus 22886 ordthauslem 22887 txuni2 23069 xkoopn 23093 txopn 23106 txdis 23136 txdis1cn 23139 pthaus 23142 txhaus 23151 tx1stc 23154 xkohaus 23157 regr1lem 23243 qustgplem 23625 methaus 24029 met2ndci 24031 metnrmlem3 24377 elplyr 25715 aaliou2b 25854 aaliou3lem9 25863 2irrexpq 26239 2irrexpqALT 26305 2sqlem2 26921 2sqlem8 26929 2sqlem11 26932 2sqb 26935 2sqnn0 26941 2sqnn 26942 pntibnd 27096 madecut 27378 mulsproplem12 27586 precsexlem11 27666 legov 27867 iscgrad 28093 f1otrge 28154 axsegconlem1 28206 axsegcon 28216 axpaschlem 28229 axlowdimlem6 28236 axlowdim1 28248 axlowdim2 28249 axeuclidlem 28251 umgrvad2edg 28501 wwlksnwwlksnon 29200 upgr4cycl4dv4e 29469 3cyclfrgrrn1 29569 4cycl2vnunb 29574 br8d 31870 lt2addrd 31995 xlt2addrd 32002 xrnarchi 32361 txomap 32845 tpr2rico 32923 qqhval2 32993 elsx 33223 br2base 33299 dya2iocnrect 33311 connpconn 34257 satfv1fvfmla1 34445 br8 34757 br4 34759 brsegle 35111 hilbert1.1 35157 nn0prpwlem 35255 knoppndvlem21 35456 poimirlem1 36537 itg2addnclem3 36589 cntotbnd 36712 smprngopr 36968 3dim2 38387 llni2 38431 lvoli3 38496 lvoli2 38500 islinei 38659 psubspi2N 38667 elpaddri 38721 eldioph2lem1 41546 diophin 41558 fphpdo 41603 irrapxlem3 41610 irrapxlem4 41611 pellexlem6 41620 pell1234qrreccl 41640 pell1234qrmulcl 41641 pell1234qrdich 41647 pell1qr1 41657 pellqrexplicit 41663 rmxycomplete 41704 dgraalem 41935 tfsconcatrev 42146 clsk3nimkb 42839 fourierdlem64 44934 rspceaov 45953 ichnreuop 46188 prelspr 46202 reuopreuprim 46242 6gbe 46487 7gbow 46488 8gbe 46489 9gbo 46490 11gbo 46491 modn0mul 47254 elbigo2r 47287 rrx2xpref1o 47452 inlinecirc02plem 47520 sepfsepc 47608 iscnrm3lem7 47620 |
Copyright terms: Public domain | W3C validator |