Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
2 | 1 | rspcev 3552 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
3 | 2 | anim2i 616 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
4 | 3 | 3impb 1113 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
6 | 5 | rexbidv 3225 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
7 | 6 | rspcev 3552 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rspc3ev 3566 opelxp 5616 fprb 7051 f1prex 7136 nf1const 7156 rspceov 7302 erov 8561 ralxpmap 8642 2dom 8774 elfiun 9119 dffi3 9120 ixpiunwdom 9279 1re 10906 hashdmpropge2 14125 wrdl2exs2 14587 ello12r 15154 ello1d 15160 elo12r 15165 o1lo1 15174 addcn2 15231 mulcn2 15233 bezoutlem3 16177 bezout 16179 pythagtriplem18 16461 pczpre 16476 pcdiv 16481 4sqlem3 16579 4sqlem4 16581 4sqlem12 16585 vdwlem1 16610 vdwlem6 16615 vdwlem8 16617 vdwlem12 16621 vdwlem13 16622 0ram 16649 ramz2 16653 cat1lem 17727 sgrp2rid2ex 18481 pmtr3ncom 18998 psgnunilem1 19016 irredn0 19860 isnzr2 20447 hausnei2 22412 cnhaus 22413 dishaus 22441 ordthauslem 22442 txuni2 22624 xkoopn 22648 txopn 22661 txdis 22691 txdis1cn 22694 pthaus 22697 txhaus 22706 tx1stc 22709 xkohaus 22712 regr1lem 22798 qustgplem 23180 methaus 23582 met2ndci 23584 metnrmlem3 23930 elplyr 25267 aaliou2b 25406 aaliou3lem9 25415 2irrexpq 25790 2irrexpqALT 25855 2sqlem2 26471 2sqlem8 26479 2sqlem11 26482 2sqb 26485 2sqnn0 26491 2sqnn 26492 pntibnd 26646 legov 26850 iscgrad 27076 f1otrge 27137 axsegconlem1 27188 axsegcon 27198 axpaschlem 27211 axlowdimlem6 27218 axlowdim1 27230 axlowdim2 27231 axeuclidlem 27233 umgrvad2edg 27483 wwlksnwwlksnon 28181 upgr4cycl4dv4e 28450 3cyclfrgrrn1 28550 4cycl2vnunb 28555 br8d 30851 lt2addrd 30976 xlt2addrd 30983 xrnarchi 31340 txomap 31686 tpr2rico 31764 qqhval2 31832 elsx 32062 isanmbfm 32123 br2base 32136 dya2iocnrect 32148 connpconn 33097 satfv1fvfmla1 33285 br8 33629 br4 33631 madecut 33992 brsegle 34337 hilbert1.1 34383 nn0prpwlem 34438 knoppndvlem21 34639 poimirlem1 35705 itg2addnclem3 35757 cntotbnd 35881 smprngopr 36137 3dim2 37409 llni2 37453 lvoli3 37518 lvoli2 37522 islinei 37681 psubspi2N 37689 elpaddri 37743 2rspcedvdw 40108 eldioph2lem1 40498 diophin 40510 fphpdo 40555 irrapxlem3 40562 irrapxlem4 40563 pellexlem6 40572 pell1234qrreccl 40592 pell1234qrmulcl 40593 pell1234qrdich 40599 pell1qr1 40609 pellqrexplicit 40615 rmxycomplete 40655 dgraalem 40886 clsk3nimkb 41539 fourierdlem64 43601 rspceaov 44576 ichnreuop 44812 prelspr 44826 reuopreuprim 44866 6gbe 45111 7gbow 45112 8gbe 45113 9gbo 45114 11gbo 45115 modn0mul 45754 elbigo2r 45787 rrx2xpref1o 45952 inlinecirc02plem 46020 sepfsepc 46109 iscnrm3lem7 46121 |
Copyright terms: Public domain | W3C validator |