![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
2 | 1 | rspcev 3621 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
3 | 2 | anim2i 617 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
4 | 3 | 3impb 1114 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
6 | 5 | rexbidv 3176 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
7 | 6 | rspcev 3621 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 |
This theorem is referenced by: 2rspcedvdw 3635 rspc3ev 3638 opelxp 5724 fprb 7213 f1prex 7303 nf1const 7323 rspceov 7479 erov 8852 ralxpmap 8934 2dom 9068 elfiun 9467 dffi3 9468 ixpiunwdom 9627 1re 11258 hashdmpropge2 14518 wrdl2exs2 14981 ello12r 15549 ello1d 15555 elo12r 15560 o1lo1 15569 addcn2 15626 mulcn2 15628 bezoutlem3 16574 bezout 16576 pythagtriplem18 16865 pczpre 16880 pcdiv 16885 4sqlem3 16983 4sqlem4 16985 4sqlem12 16989 vdwlem1 17014 vdwlem6 17019 vdwlem8 17021 vdwlem12 17025 vdwlem13 17026 0ram 17053 ramz2 17057 cat1lem 18149 sgrp2rid2ex 18952 pmtr3ncom 19507 psgnunilem1 19525 irredn0 20439 isnzr2 20534 hausnei2 23376 cnhaus 23377 dishaus 23405 ordthauslem 23406 txuni2 23588 xkoopn 23612 txopn 23625 txdis 23655 txdis1cn 23658 pthaus 23661 txhaus 23670 tx1stc 23673 xkohaus 23676 regr1lem 23762 qustgplem 24144 methaus 24548 met2ndci 24550 metnrmlem3 24896 elplyr 26254 aaliou2b 26397 aaliou3lem9 26406 2irrexpq 26787 2irrexpqALT 26857 2sqlem2 27476 2sqlem8 27484 2sqlem11 27487 2sqb 27490 2sqnn0 27496 2sqnn 27497 pntibnd 27651 madecut 27935 mulsproplem12 28167 precsexlem11 28255 zzs12 28437 remulscllem1 28446 legov 28607 iscgrad 28833 f1otrge 28894 axsegconlem1 28946 axsegcon 28956 axpaschlem 28969 axlowdimlem6 28976 axlowdim1 28988 axlowdim2 28989 axeuclidlem 28991 umgrvad2edg 29244 wwlksnwwlksnon 29944 upgr4cycl4dv4e 30213 3cyclfrgrrn1 30313 4cycl2vnunb 30318 br8d 32629 lt2addrd 32761 xlt2addrd 32768 xrnarchi 33173 txomap 33794 tpr2rico 33872 qqhval2 33944 elsx 34174 br2base 34250 dya2iocnrect 34262 connpconn 35219 satfv1fvfmla1 35407 br8 35735 br4 35737 brsegle 36089 hilbert1.1 36135 nn0prpwlem 36304 knoppndvlem21 36514 poimirlem1 37607 itg2addnclem3 37659 cntotbnd 37782 smprngopr 38038 3dim2 39450 llni2 39494 lvoli3 39559 lvoli2 39563 islinei 39722 psubspi2N 39730 elpaddri 39784 eldioph2lem1 42747 diophin 42759 fphpdo 42804 irrapxlem3 42811 irrapxlem4 42812 pellexlem6 42821 pell1234qrreccl 42841 pell1234qrmulcl 42842 pell1234qrdich 42848 pell1qr1 42858 pellqrexplicit 42864 rmxycomplete 42905 dgraalem 43133 tfsconcatrev 43337 clsk3nimkb 44029 fourierdlem64 46125 rspceaov 47146 ichnreuop 47396 prelspr 47410 reuopreuprim 47450 6gbe 47695 7gbow 47696 8gbe 47697 9gbo 47698 11gbo 47699 modn0mul 48369 elbigo2r 48402 rrx2xpref1o 48567 inlinecirc02plem 48635 sepfsepc 48723 iscnrm3lem7 48735 |
Copyright terms: Public domain | W3C validator |