Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
2 | 1 | rspcev 3537 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
3 | 2 | anim2i 620 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
4 | 3 | 3impb 1117 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
6 | 5 | rexbidv 3216 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
7 | 6 | rspcev 3537 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 |
This theorem is referenced by: rspc3ev 3551 opelxp 5587 fprb 7009 f1prex 7094 nf1const 7114 rspceov 7260 erov 8496 ralxpmap 8577 2dom 8707 elfiun 9046 dffi3 9047 ixpiunwdom 9206 1re 10833 hashdmpropge2 14049 wrdl2exs2 14511 ello12r 15078 ello1d 15084 elo12r 15089 o1lo1 15098 addcn2 15155 mulcn2 15157 bezoutlem3 16101 bezout 16103 pythagtriplem18 16385 pczpre 16400 pcdiv 16405 4sqlem3 16503 4sqlem4 16505 4sqlem12 16509 vdwlem1 16534 vdwlem6 16539 vdwlem8 16541 vdwlem12 16545 vdwlem13 16546 0ram 16573 ramz2 16577 cat1lem 17602 sgrp2rid2ex 18354 pmtr3ncom 18867 psgnunilem1 18885 irredn0 19721 isnzr2 20301 hausnei2 22250 cnhaus 22251 dishaus 22279 ordthauslem 22280 txuni2 22462 xkoopn 22486 txopn 22499 txdis 22529 txdis1cn 22532 pthaus 22535 txhaus 22544 tx1stc 22547 xkohaus 22550 regr1lem 22636 qustgplem 23018 methaus 23418 met2ndci 23420 metnrmlem3 23758 elplyr 25095 aaliou2b 25234 aaliou3lem9 25243 2irrexpq 25618 2irrexpqALT 25683 2sqlem2 26299 2sqlem8 26307 2sqlem11 26310 2sqb 26313 2sqnn0 26319 2sqnn 26320 pntibnd 26474 legov 26676 iscgrad 26902 f1otrge 26963 axsegconlem1 27008 axsegcon 27018 axpaschlem 27031 axlowdimlem6 27038 axlowdim1 27050 axlowdim2 27051 axeuclidlem 27053 umgrvad2edg 27301 wwlksnwwlksnon 27999 upgr4cycl4dv4e 28268 3cyclfrgrrn1 28368 4cycl2vnunb 28373 br8d 30669 lt2addrd 30794 xlt2addrd 30801 xrnarchi 31157 txomap 31498 tpr2rico 31576 qqhval2 31644 elsx 31874 isanmbfm 31935 br2base 31948 dya2iocnrect 31960 connpconn 32910 satfv1fvfmla1 33098 br8 33442 br4 33444 madecut 33802 brsegle 34147 hilbert1.1 34193 nn0prpwlem 34248 knoppndvlem21 34449 poimirlem1 35515 itg2addnclem3 35567 cntotbnd 35691 smprngopr 35947 3dim2 37219 llni2 37263 lvoli3 37328 lvoli2 37332 islinei 37491 psubspi2N 37499 elpaddri 37553 2rspcedvdw 39903 eldioph2lem1 40285 diophin 40297 fphpdo 40342 irrapxlem3 40349 irrapxlem4 40350 pellexlem6 40359 pell1234qrreccl 40379 pell1234qrmulcl 40380 pell1234qrdich 40386 pell1qr1 40396 pellqrexplicit 40402 rmxycomplete 40442 dgraalem 40673 clsk3nimkb 41327 fourierdlem64 43386 rspceaov 44361 ichnreuop 44597 prelspr 44611 reuopreuprim 44651 6gbe 44896 7gbow 44897 8gbe 44898 9gbo 44899 11gbo 44900 modn0mul 45539 elbigo2r 45572 rrx2xpref1o 45737 inlinecirc02plem 45805 sepfsepc 45894 iscnrm3lem7 45906 |
Copyright terms: Public domain | W3C validator |