![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
2 | 1 | rspcev 3570 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
3 | 2 | anim2i 617 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
4 | 3 | 3impb 1114 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
6 | 5 | rexbidv 3171 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
7 | 6 | rspcev 3570 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 |
This theorem is referenced by: rspc3ev 3583 opelxp 5650 fprb 7119 f1prex 7206 nf1const 7226 rspceov 7376 erov 8666 ralxpmap 8747 2dom 8887 elfiun 9279 dffi3 9280 ixpiunwdom 9439 1re 11068 hashdmpropge2 14289 wrdl2exs2 14750 ello12r 15317 ello1d 15323 elo12r 15328 o1lo1 15337 addcn2 15394 mulcn2 15396 bezoutlem3 16340 bezout 16342 pythagtriplem18 16622 pczpre 16637 pcdiv 16642 4sqlem3 16740 4sqlem4 16742 4sqlem12 16746 vdwlem1 16771 vdwlem6 16776 vdwlem8 16778 vdwlem12 16782 vdwlem13 16783 0ram 16810 ramz2 16814 cat1lem 17900 sgrp2rid2ex 18654 pmtr3ncom 19171 psgnunilem1 19189 irredn0 20032 isnzr2 20632 hausnei2 22602 cnhaus 22603 dishaus 22631 ordthauslem 22632 txuni2 22814 xkoopn 22838 txopn 22851 txdis 22881 txdis1cn 22884 pthaus 22887 txhaus 22896 tx1stc 22899 xkohaus 22902 regr1lem 22988 qustgplem 23370 methaus 23774 met2ndci 23776 metnrmlem3 24122 elplyr 25460 aaliou2b 25599 aaliou3lem9 25608 2irrexpq 25983 2irrexpqALT 26048 2sqlem2 26664 2sqlem8 26672 2sqlem11 26675 2sqb 26678 2sqnn0 26684 2sqnn 26685 pntibnd 26839 legov 27176 iscgrad 27402 f1otrge 27463 axsegconlem1 27515 axsegcon 27525 axpaschlem 27538 axlowdimlem6 27545 axlowdim1 27557 axlowdim2 27558 axeuclidlem 27560 umgrvad2edg 27810 wwlksnwwlksnon 28509 upgr4cycl4dv4e 28778 3cyclfrgrrn1 28878 4cycl2vnunb 28883 br8d 31178 lt2addrd 31302 xlt2addrd 31309 xrnarchi 31666 txomap 32023 tpr2rico 32101 qqhval2 32171 elsx 32401 br2base 32477 dya2iocnrect 32489 connpconn 33437 satfv1fvfmla1 33625 br8 33956 br4 33958 madecut 34156 brsegle 34501 hilbert1.1 34547 nn0prpwlem 34602 knoppndvlem21 34803 poimirlem1 35876 itg2addnclem3 35928 cntotbnd 36052 smprngopr 36308 3dim2 37729 llni2 37773 lvoli3 37838 lvoli2 37842 islinei 38001 psubspi2N 38009 elpaddri 38063 2rspcedvdw 40430 eldioph2lem1 40832 diophin 40844 fphpdo 40889 irrapxlem3 40896 irrapxlem4 40897 pellexlem6 40906 pell1234qrreccl 40926 pell1234qrmulcl 40927 pell1234qrdich 40933 pell1qr1 40943 pellqrexplicit 40949 rmxycomplete 40990 dgraalem 41221 clsk3nimkb 41960 fourierdlem64 44036 rspceaov 45029 ichnreuop 45264 prelspr 45278 reuopreuprim 45318 6gbe 45563 7gbow 45564 8gbe 45565 9gbo 45566 11gbo 45567 modn0mul 46206 elbigo2r 46239 rrx2xpref1o 46404 inlinecirc02plem 46472 sepfsepc 46561 iscnrm3lem7 46573 |
Copyright terms: Public domain | W3C validator |