![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
2 | 1 | rspcev 3635 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
3 | 2 | anim2i 616 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
4 | 3 | 3impb 1115 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
6 | 5 | rexbidv 3185 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
7 | 6 | rspcev 3635 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 |
This theorem is referenced by: 2rspcedvdw 3649 rspc3ev 3652 opelxp 5736 fprb 7231 f1prex 7320 nf1const 7340 rspceov 7497 erov 8872 ralxpmap 8954 2dom 9095 elfiun 9499 dffi3 9500 ixpiunwdom 9659 1re 11290 hashdmpropge2 14532 wrdl2exs2 14995 ello12r 15563 ello1d 15569 elo12r 15574 o1lo1 15583 addcn2 15640 mulcn2 15642 bezoutlem3 16588 bezout 16590 pythagtriplem18 16879 pczpre 16894 pcdiv 16899 4sqlem3 16997 4sqlem4 16999 4sqlem12 17003 vdwlem1 17028 vdwlem6 17033 vdwlem8 17035 vdwlem12 17039 vdwlem13 17040 0ram 17067 ramz2 17071 cat1lem 18163 sgrp2rid2ex 18962 pmtr3ncom 19517 psgnunilem1 19535 irredn0 20449 isnzr2 20544 hausnei2 23382 cnhaus 23383 dishaus 23411 ordthauslem 23412 txuni2 23594 xkoopn 23618 txopn 23631 txdis 23661 txdis1cn 23664 pthaus 23667 txhaus 23676 tx1stc 23679 xkohaus 23682 regr1lem 23768 qustgplem 24150 methaus 24554 met2ndci 24556 metnrmlem3 24902 elplyr 26260 aaliou2b 26401 aaliou3lem9 26410 2irrexpq 26791 2irrexpqALT 26861 2sqlem2 27480 2sqlem8 27488 2sqlem11 27491 2sqb 27494 2sqnn0 27500 2sqnn 27501 pntibnd 27655 madecut 27939 mulsproplem12 28171 precsexlem11 28259 zzs12 28441 remulscllem1 28450 legov 28611 iscgrad 28837 f1otrge 28898 axsegconlem1 28950 axsegcon 28960 axpaschlem 28973 axlowdimlem6 28980 axlowdim1 28992 axlowdim2 28993 axeuclidlem 28995 umgrvad2edg 29248 wwlksnwwlksnon 29948 upgr4cycl4dv4e 30217 3cyclfrgrrn1 30317 4cycl2vnunb 30322 br8d 32632 lt2addrd 32758 xlt2addrd 32765 xrnarchi 33164 txomap 33780 tpr2rico 33858 qqhval2 33928 elsx 34158 br2base 34234 dya2iocnrect 34246 connpconn 35203 satfv1fvfmla1 35391 br8 35718 br4 35720 brsegle 36072 hilbert1.1 36118 nn0prpwlem 36288 knoppndvlem21 36498 poimirlem1 37581 itg2addnclem3 37633 cntotbnd 37756 smprngopr 38012 3dim2 39425 llni2 39469 lvoli3 39534 lvoli2 39538 islinei 39697 psubspi2N 39705 elpaddri 39759 eldioph2lem1 42716 diophin 42728 fphpdo 42773 irrapxlem3 42780 irrapxlem4 42781 pellexlem6 42790 pell1234qrreccl 42810 pell1234qrmulcl 42811 pell1234qrdich 42817 pell1qr1 42827 pellqrexplicit 42833 rmxycomplete 42874 dgraalem 43102 tfsconcatrev 43310 clsk3nimkb 44002 fourierdlem64 46091 rspceaov 47112 ichnreuop 47346 prelspr 47360 reuopreuprim 47400 6gbe 47645 7gbow 47646 8gbe 47647 9gbo 47648 11gbo 47649 modn0mul 48254 elbigo2r 48287 rrx2xpref1o 48452 inlinecirc02plem 48520 sepfsepc 48607 iscnrm3lem7 48619 |
Copyright terms: Public domain | W3C validator |