Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
2 | 1 | rspcev 3562 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
3 | 2 | anim2i 617 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
4 | 3 | 3impb 1114 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
6 | 5 | rexbidv 3227 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
7 | 6 | rspcev 3562 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 |
This theorem is referenced by: rspc3ev 3575 opelxp 5626 fprb 7078 f1prex 7165 nf1const 7185 rspceov 7331 erov 8612 ralxpmap 8693 2dom 8829 elfiun 9198 dffi3 9199 ixpiunwdom 9358 1re 10984 hashdmpropge2 14206 wrdl2exs2 14668 ello12r 15235 ello1d 15241 elo12r 15246 o1lo1 15255 addcn2 15312 mulcn2 15314 bezoutlem3 16258 bezout 16260 pythagtriplem18 16542 pczpre 16557 pcdiv 16562 4sqlem3 16660 4sqlem4 16662 4sqlem12 16666 vdwlem1 16691 vdwlem6 16696 vdwlem8 16698 vdwlem12 16702 vdwlem13 16703 0ram 16730 ramz2 16734 cat1lem 17820 sgrp2rid2ex 18575 pmtr3ncom 19092 psgnunilem1 19110 irredn0 19954 isnzr2 20543 hausnei2 22513 cnhaus 22514 dishaus 22542 ordthauslem 22543 txuni2 22725 xkoopn 22749 txopn 22762 txdis 22792 txdis1cn 22795 pthaus 22798 txhaus 22807 tx1stc 22810 xkohaus 22813 regr1lem 22899 qustgplem 23281 methaus 23685 met2ndci 23687 metnrmlem3 24033 elplyr 25371 aaliou2b 25510 aaliou3lem9 25519 2irrexpq 25894 2irrexpqALT 25959 2sqlem2 26575 2sqlem8 26583 2sqlem11 26586 2sqb 26589 2sqnn0 26595 2sqnn 26596 pntibnd 26750 legov 26955 iscgrad 27181 f1otrge 27242 axsegconlem1 27294 axsegcon 27304 axpaschlem 27317 axlowdimlem6 27324 axlowdim1 27336 axlowdim2 27337 axeuclidlem 27339 umgrvad2edg 27589 wwlksnwwlksnon 28289 upgr4cycl4dv4e 28558 3cyclfrgrrn1 28658 4cycl2vnunb 28663 br8d 30959 lt2addrd 31083 xlt2addrd 31090 xrnarchi 31447 txomap 31793 tpr2rico 31871 qqhval2 31941 elsx 32171 isanmbfm 32232 br2base 32245 dya2iocnrect 32257 connpconn 33206 satfv1fvfmla1 33394 br8 33732 br4 33734 madecut 34074 brsegle 34419 hilbert1.1 34465 nn0prpwlem 34520 knoppndvlem21 34721 poimirlem1 35787 itg2addnclem3 35839 cntotbnd 35963 smprngopr 36219 3dim2 37489 llni2 37533 lvoli3 37598 lvoli2 37602 islinei 37761 psubspi2N 37769 elpaddri 37823 2rspcedvdw 40187 eldioph2lem1 40589 diophin 40601 fphpdo 40646 irrapxlem3 40653 irrapxlem4 40654 pellexlem6 40663 pell1234qrreccl 40683 pell1234qrmulcl 40684 pell1234qrdich 40690 pell1qr1 40700 pellqrexplicit 40706 rmxycomplete 40746 dgraalem 40977 clsk3nimkb 41657 fourierdlem64 43718 rspceaov 44700 ichnreuop 44935 prelspr 44949 reuopreuprim 44989 6gbe 45234 7gbow 45235 8gbe 45236 9gbo 45237 11gbo 45238 modn0mul 45877 elbigo2r 45910 rrx2xpref1o 46075 inlinecirc02plem 46143 sepfsepc 46232 iscnrm3lem7 46244 |
Copyright terms: Public domain | W3C validator |