| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version | ||
| Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 2 | 1 | rspcev 3601 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
| 4 | 3 | 3impb 1114 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
| 5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 6 | 5 | rexbidv 3164 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
| 7 | 6 | rspcev 3601 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
| 8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: 2rspcedvdw 3615 rspc3ev 3618 opelxp 5690 fprb 7185 f1prex 7276 nf1const 7296 rspceov 7452 erov 8826 ralxpmap 8908 2dom 9042 elfiun 9440 dffi3 9441 ixpiunwdom 9602 1re 11233 hashdmpropge2 14499 wrdl2exs2 14963 ello12r 15531 ello1d 15537 elo12r 15542 o1lo1 15551 addcn2 15608 mulcn2 15610 bezoutlem3 16558 bezout 16560 pythagtriplem18 16850 pczpre 16865 pcdiv 16870 4sqlem3 16968 4sqlem4 16970 4sqlem12 16974 vdwlem1 16999 vdwlem6 17004 vdwlem8 17006 vdwlem12 17010 vdwlem13 17011 0ram 17038 ramz2 17042 cat1lem 18107 sgrp2rid2ex 18903 pmtr3ncom 19454 psgnunilem1 19472 irredn0 20381 isnzr2 20476 hausnei2 23289 cnhaus 23290 dishaus 23318 ordthauslem 23319 txuni2 23501 xkoopn 23525 txopn 23538 txdis 23568 txdis1cn 23571 pthaus 23574 txhaus 23583 tx1stc 23586 xkohaus 23589 regr1lem 23675 qustgplem 24057 methaus 24457 met2ndci 24459 metnrmlem3 24799 elplyr 26156 aaliou2b 26299 aaliou3lem9 26308 2irrexpq 26690 2irrexpqALT 26760 2sqlem2 27379 2sqlem8 27387 2sqlem11 27390 2sqb 27393 2sqnn0 27399 2sqnn 27400 pntibnd 27554 madecut 27838 mulsproplem12 28070 precsexlem11 28158 zzs12 28340 remulscllem1 28349 legov 28510 iscgrad 28736 f1otrge 28797 axsegconlem1 28842 axsegcon 28852 axpaschlem 28865 axlowdimlem6 28872 axlowdim1 28884 axlowdim2 28885 axeuclidlem 28887 umgrvad2edg 29138 wwlksnwwlksnon 29843 upgr4cycl4dv4e 30112 3cyclfrgrrn1 30212 4cycl2vnunb 30217 br8d 32536 lt2addrd 32674 xlt2addrd 32682 xrnarchi 33128 txomap 33811 tpr2rico 33889 qqhval2 33959 elsx 34171 br2base 34247 dya2iocnrect 34259 connpconn 35203 satfv1fvfmla1 35391 br8 35719 br4 35721 brsegle 36072 hilbert1.1 36118 nn0prpwlem 36286 knoppndvlem21 36496 poimirlem1 37591 itg2addnclem3 37643 cntotbnd 37766 smprngopr 38022 3dim2 39433 llni2 39477 lvoli3 39542 lvoli2 39546 islinei 39705 psubspi2N 39713 elpaddri 39767 eldioph2lem1 42730 diophin 42742 fphpdo 42787 irrapxlem3 42794 irrapxlem4 42795 pellexlem6 42804 pell1234qrreccl 42824 pell1234qrmulcl 42825 pell1234qrdich 42831 pell1qr1 42841 pellqrexplicit 42847 rmxycomplete 42888 dgraalem 43116 tfsconcatrev 43319 clsk3nimkb 44011 fourierdlem64 46147 rspceaov 47174 ichnreuop 47434 prelspr 47448 reuopreuprim 47488 6gbe 47733 7gbow 47734 8gbe 47735 9gbo 47736 11gbo 47737 modn0mul 48448 elbigo2r 48481 rrx2xpref1o 48646 inlinecirc02plem 48714 sepfsepc 48850 iscnrm3lem7 48861 |
| Copyright terms: Public domain | W3C validator |