![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2ev | Structured version Visualization version GIF version |
Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
Ref | Expression |
---|---|
rspc2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc2v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc2ev | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
2 | 1 | rspcev 3561 | . . . 4 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑦 ∈ 𝐷 𝜒) |
3 | 2 | anim2i 616 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐵 ∈ 𝐷 ∧ 𝜓)) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
4 | 3 | 3impb 1108 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → (𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒)) |
5 | rspc2v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
6 | 5 | rexbidv 3262 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 𝜑 ↔ ∃𝑦 ∈ 𝐷 𝜒)) |
7 | 6 | rspcev 3561 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∃𝑦 ∈ 𝐷 𝜒) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ∃wrex 3108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rex 3113 df-v 3442 |
This theorem is referenced by: rspc3ev 3578 opelxp 5486 fprb 6830 f1prex 6912 rspceov 7069 erov 8251 ralxpmap 8316 2dom 8437 elfiun 8747 dffi3 8748 ixpiunwdom 8908 1re 10494 hashdmpropge2 13691 wrdl2exs2 14148 ello12r 14712 ello1d 14718 elo12r 14723 o1lo1 14732 addcn2 14788 mulcn2 14790 bezoutlem3 15722 bezout 15724 pythagtriplem18 16002 pczpre 16017 pcdiv 16022 4sqlem3 16119 4sqlem4 16121 4sqlem12 16125 vdwlem1 16150 vdwlem6 16155 vdwlem8 16157 vdwlem12 16161 vdwlem13 16162 0ram 16189 ramz2 16193 sgrp2rid2ex 17857 pmtr3ncom 18338 psgnunilem1 18356 irredn0 19147 isnzr2 19729 hausnei2 21649 cnhaus 21650 dishaus 21678 ordthauslem 21679 txuni2 21861 xkoopn 21885 txopn 21898 txdis 21928 txdis1cn 21931 pthaus 21934 txhaus 21943 tx1stc 21946 xkohaus 21949 regr1lem 22035 qustgplem 22416 methaus 22817 met2ndci 22819 metnrmlem3 23156 elplyr 24478 aaliou2b 24617 aaliou3lem9 24626 2irrexpq 24998 2irrexpqALT 25063 2sqlem2 25680 2sqlem8 25688 2sqlem11 25691 2sqb 25694 2sqnn0 25700 2sqnn 25701 pntibnd 25855 legov 26057 iscgrad 26283 f1otrge 26345 axsegconlem1 26390 axsegcon 26400 axpaschlem 26413 axlowdimlem6 26420 axlowdim1 26432 axlowdim2 26433 axeuclidlem 26435 umgrvad2edg 26682 wwlksnwwlksnon 27380 upgr4cycl4dv4e 27650 3cyclfrgrrn1 27752 4cycl2vnunb 27757 br8d 30047 lt2addrd 30159 xlt2addrd 30166 xrnarchi 30447 txomap 30711 tpr2rico 30768 qqhval2 30836 elsx 31066 isanmbfm 31127 br2base 31140 dya2iocnrect 31152 connpconn 32092 satfv1fvfmla1 32280 br8 32602 br4 32604 brsegle 33180 hilbert1.1 33226 nn0prpwlem 33281 knoppndvlem21 33482 poimirlem1 34445 itg2addnclem3 34497 cntotbnd 34627 smprngopr 34883 3dim2 36156 llni2 36200 lvoli3 36265 lvoli2 36269 islinei 36428 psubspi2N 36436 elpaddri 36490 eldioph2lem1 38863 diophin 38875 fphpdo 38920 irrapxlem3 38927 irrapxlem4 38928 pellexlem6 38937 pell1234qrreccl 38957 pell1234qrmulcl 38958 pell1234qrdich 38964 pell1qr1 38974 pellqrexplicit 38980 rmxycomplete 39020 dgraalem 39251 clsk3nimkb 39896 fourierdlem64 42019 rspceaov 42934 ichnreuop 43138 prelspr 43152 reuopreuprim 43192 6gbe 43440 7gbow 43441 8gbe 43442 9gbo 43443 11gbo 43444 modn0mul 44083 elbigo2r 44116 rrx2xpref1o 44208 inlinecirc02plem 44276 |
Copyright terms: Public domain | W3C validator |