| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcedvdw | Structured version Visualization version GIF version | ||
| Description: Version of rspcedvd 3624 where the implicit substitution hypothesis does not have an antecedent, which also avoids a disjoint variable condition on 𝜑, 𝑥. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| rspcedvdw.s | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| rspcedvdw.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcedvdw.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcedvdw.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcedvdw.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | rspcedvdw.s | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | rspcev 3622 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜒) → ∃𝑥 ∈ 𝐵 𝜓) |
| 5 | 1, 2, 4 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
| Copyright terms: Public domain | W3C validator |