Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcedvdw | Structured version Visualization version GIF version |
Description: Version of rspcedvd 3564 where the implicit substitution hypothesis does not have an antecedent, which also avoids a disjoint variable condition on 𝜑, 𝑥. (Contributed by SN, 20-Aug-2024.) |
Ref | Expression |
---|---|
rspcedvdw.s | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
rspcedvdw.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcedvdw.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedvdw.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcedvdw.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | rspcedvdw.s | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
4 | 3 | rspcev 3561 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜒) → ∃𝑥 ∈ 𝐵 𝜓) |
5 | 1, 2, 4 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 |
This theorem is referenced by: flt4lem2 40481 flt4lem7 40493 |
Copyright terms: Public domain | W3C validator |