![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcedvdw | Structured version Visualization version GIF version |
Description: Version of rspcedvd 3637 where the implicit substitution hypothesis does not have an antecedent, which also avoids a disjoint variable condition on 𝜑, 𝑥. (Contributed by SN, 20-Aug-2024.) |
Ref | Expression |
---|---|
rspcedvdw.s | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
rspcedvdw.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcedvdw.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcedvdw.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcedvdw.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | rspcedvdw.s | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
4 | 3 | rspcev 3635 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜒) → ∃𝑥 ∈ 𝐵 𝜓) |
5 | 1, 2, 4 | syl2anc 583 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 |
This theorem is referenced by: prproe 4929 frxp2 8185 elpq 13040 reltre 13402 rpltrp 13403 reltxrnmnf 13404 modmuladd 13964 modmuladdnn0 13966 ghmqusnsglem1 19320 opprring 20373 pzriprnglem7 21521 pzriprnglem13 21527 pzriprnglem14 21528 pzriprngALT 21529 dfnns2 28380 remulscllem1 28450 remulscllem2 28451 mndlrinvb 33011 mndlactfo 33013 mndractfo 33015 mndlactf1o 33016 mndractf1o 33017 fracerl 33273 fracfld 33275 idomsubr 33276 dvdsruasso2 33379 unitmulrprm 33521 1arithidomlem1 33528 1arithidom 33530 1arithufdlem1 33537 1arithufdlem2 33538 1arithufdlem3 33539 1arithufdlem4 33540 dfufd2lem 33542 zringfrac 33547 evl1deg1 33566 evl1deg2 33567 evl1deg3 33568 ply1degltdimlem 33635 irredminply 33707 algextdeglem4 33711 algextdeglem8 33715 rtelextdg2lem 33717 fldext2chn 33719 constrmon 33734 sn-negex12 42392 fsuppind 42545 prjspertr 42560 prjsperref 42561 prjspersym 42562 prjspvs 42565 0prjspnrel 42582 flt4lem2 42602 flt4lem7 42614 isuspgrim0lem 47755 uhgrimisgrgriclem 47782 clnbgrgrim 47786 uspgrlimlem2 47813 |
Copyright terms: Public domain | W3C validator |