| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exsb | Structured version Visualization version GIF version | ||
| Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 30-Sep-2018.) |
| Ref | Expression |
|---|---|
| 2exsb | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
| 2 | nfv 1915 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 3 | 1, 2 | 2sb8ef 2356 | . 2 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
| 4 | 2sb6 2089 | . . 3 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | |
| 5 | 4 | 2exbii 1850 | . 2 ⊢ (∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
| 6 | 3, 5 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: 2eu6 2652 |
| Copyright terms: Public domain | W3C validator |