MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exsb Structured version   Visualization version   GIF version

Theorem 2exsb 2348
Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 30-Sep-2018.)
Assertion
Ref Expression
2exsb (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝑤,𝑧   𝜑,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2exsb
StepHypRef Expression
1 nfv 1909 . . 3 𝑤𝜑
2 nfv 1909 . . 3 𝑧𝜑
31, 22sb8ef 2344 . 2 (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
4 2sb6 2081 . . 3 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
542exbii 1843 . 2 (∃𝑧𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
63, 5bitri 275 1 (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531  wex 1773  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-nf 1778  df-sb 2060
This theorem is referenced by:  2eu6  2644
  Copyright terms: Public domain W3C validator