MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdfv0 Structured version   Visualization version   GIF version

Theorem swrdfv0 14683
Description: The first symbol in an extracted subword. (Contributed by AV, 27-Apr-2022.)
Assertion
Ref Expression
swrdfv0 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆𝐹))

Proof of Theorem swrdfv0
StepHypRef Expression
1 elfzofz 13711 . . . 4 (𝐹 ∈ (0..^𝐿) → 𝐹 ∈ (0...𝐿))
213anim2i 1152 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
3 fzonnsub 13720 . . . . 5 (𝐹 ∈ (0..^𝐿) → (𝐿𝐹) ∈ ℕ)
433ad2ant2 1133 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐿𝐹) ∈ ℕ)
5 lbfzo0 13735 . . . 4 (0 ∈ (0..^(𝐿𝐹)) ↔ (𝐿𝐹) ∈ ℕ)
64, 5sylibr 234 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0..^(𝐿𝐹)))
7 swrdfv 14682 . . 3 (((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 0 ∈ (0..^(𝐿𝐹))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆‘(0 + 𝐹)))
82, 6, 7syl2anc 584 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆‘(0 + 𝐹)))
9 elfzoelz 13695 . . . . . 6 (𝐹 ∈ (0..^𝐿) → 𝐹 ∈ ℤ)
109zcnd 12720 . . . . 5 (𝐹 ∈ (0..^𝐿) → 𝐹 ∈ ℂ)
1110addlidd 11459 . . . 4 (𝐹 ∈ (0..^𝐿) → (0 + 𝐹) = 𝐹)
1211fveq2d 6910 . . 3 (𝐹 ∈ (0..^𝐿) → (𝑆‘(0 + 𝐹)) = (𝑆𝐹))
13123ad2ant2 1133 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆‘(0 + 𝐹)) = (𝑆𝐹))
148, 13eqtrd 2774 1 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1536  wcel 2105  cop 4636  cfv 6562  (class class class)co 7430  0cc0 11152   + caddc 11155  cmin 11489  cn 12263  ...cfz 13543  ..^cfzo 13690  chash 14365  Word cword 14548   substr csubstr 14674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-substr 14675
This theorem is referenced by:  cycpmco2lem4  33131
  Copyright terms: Public domain W3C validator