MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdfv0 Structured version   Visualization version   GIF version

Theorem swrdfv0 14623
Description: The first symbol in an extracted subword. (Contributed by AV, 27-Apr-2022.)
Assertion
Ref Expression
swrdfv0 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆𝐹))

Proof of Theorem swrdfv0
StepHypRef Expression
1 elfzofz 13672 . . . 4 (𝐹 ∈ (0..^𝐿) → 𝐹 ∈ (0...𝐿))
213anim2i 1151 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))))
3 fzonnsub 13681 . . . . 5 (𝐹 ∈ (0..^𝐿) → (𝐿𝐹) ∈ ℕ)
433ad2ant2 1132 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐿𝐹) ∈ ℕ)
5 lbfzo0 13696 . . . 4 (0 ∈ (0..^(𝐿𝐹)) ↔ (𝐿𝐹) ∈ ℕ)
64, 5sylibr 233 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → 0 ∈ (0..^(𝐿𝐹)))
7 swrdfv 14622 . . 3 (((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 0 ∈ (0..^(𝐿𝐹))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆‘(0 + 𝐹)))
82, 6, 7syl2anc 583 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆‘(0 + 𝐹)))
9 elfzoelz 13656 . . . . . 6 (𝐹 ∈ (0..^𝐿) → 𝐹 ∈ ℤ)
109zcnd 12689 . . . . 5 (𝐹 ∈ (0..^𝐿) → 𝐹 ∈ ℂ)
1110addlidd 11437 . . . 4 (𝐹 ∈ (0..^𝐿) → (0 + 𝐹) = 𝐹)
1211fveq2d 6895 . . 3 (𝐹 ∈ (0..^𝐿) → (𝑆‘(0 + 𝐹)) = (𝑆𝐹))
13123ad2ant2 1132 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆‘(0 + 𝐹)) = (𝑆𝐹))
148, 13eqtrd 2767 1 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  cop 4630  cfv 6542  (class class class)co 7414  0cc0 11130   + caddc 11133  cmin 11466  cn 12234  ...cfz 13508  ..^cfzo 13651  chash 14313  Word cword 14488   substr csubstr 14614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652  df-hash 14314  df-word 14489  df-substr 14615
This theorem is referenced by:  cycpmco2lem4  32828
  Copyright terms: Public domain W3C validator