Step | Hyp | Ref
| Expression |
1 | | ral0 4424 |
. . . 4
⊢
∀𝑤 ∈
∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) |
2 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
3 | | f1oi 6698 |
. . . . . . . 8
⊢ ( I
↾ 𝑁):𝑁–1-1-onto→𝑁 |
4 | | f1of 6661 |
. . . . . . . 8
⊢ (( I
↾ 𝑁):𝑁–1-1-onto→𝑁 → ( I ↾ 𝑁):𝑁⟶𝑁) |
5 | 3, 4 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ( I ↾ 𝑁):𝑁⟶𝑁) |
6 | | mdetuni.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ Fin) |
7 | 6, 6 | elmapd 8522 |
. . . . . . 7
⊢ (𝜑 → (( I ↾ 𝑁) ∈ (𝑁 ↑m 𝑁) ↔ ( I ↾ 𝑁):𝑁⟶𝑁)) |
8 | 5, 7 | mpbird 260 |
. . . . . 6
⊢ (𝜑 → ( I ↾ 𝑁) ∈ (𝑁 ↑m 𝑁)) |
9 | 8 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ( I ↾ 𝑁) ∈ (𝑁 ↑m 𝑁)) |
10 | | simplrl 777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → 𝑦 ∈ 𝐵) |
11 | | mdetuni.a |
. . . . . . . . . . . . . . . . 17
⊢ 𝐴 = (𝑁 Mat 𝑅) |
12 | | mdetuni.k |
. . . . . . . . . . . . . . . . 17
⊢ 𝐾 = (Base‘𝑅) |
13 | | mdetuni.b |
. . . . . . . . . . . . . . . . 17
⊢ 𝐵 = (Base‘𝐴) |
14 | 11, 12, 13 | matbas2i 21319 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐾 ↑m (𝑁 × 𝑁))) |
15 | | elmapi 8530 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝐾 ↑m (𝑁 × 𝑁)) → 𝑦:(𝑁 × 𝑁)⟶𝐾) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐵 → 𝑦:(𝑁 × 𝑁)⟶𝐾) |
17 | 16 | feqmptd 6780 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐵 → 𝑦 = (𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤))) |
18 | 17 | fveq2d 6721 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐵 → (𝐷‘𝑦) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤)))) |
19 | 10, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘𝑦) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤)))) |
20 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) |
21 | | mpteq12 5142 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 × 𝑁) = (𝑁 × 𝑁) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤)) = (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) |
22 | 21 | fveq2d 6721 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 × 𝑁) = (𝑁 × 𝑁) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 )))) |
23 | 20, 22 | mpan 690 |
. . . . . . . . . . . . 13
⊢
(∀𝑤 ∈
(𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 )))) |
24 | 23 | adantl 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ (𝑦‘𝑤))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 )))) |
25 | | eleq1 2825 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑧 → (𝑎 ∈ (𝑁 ↑m 𝑁) ↔ 𝑧 ∈ (𝑁 ↑m 𝑁))) |
26 | 25 | anbi2d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑧 → ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) ↔ (𝜑 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁)))) |
27 | | elequ2 2125 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑧 → (𝑤 ∈ 𝑎 ↔ 𝑤 ∈ 𝑧)) |
28 | 27 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑧 → if(𝑤 ∈ 𝑎, 1 , 0 ) = if(𝑤 ∈ 𝑧, 1 , 0 )) |
29 | 28 | mpteq2dv 5151 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑧 → (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 )) = (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) |
30 | 29 | fveq2d 6721 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑧 → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 )))) |
31 | 30 | eqeq1d 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑧 → ((𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = 0 ↔ (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 )) |
32 | 26, 31 | imbi12d 348 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑧 → (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = 0 ) ↔ ((𝜑 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 ))) |
33 | | eleq1 2825 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 〈𝑏, 𝑐〉 → (𝑤 ∈ 𝑎 ↔ 〈𝑏, 𝑐〉 ∈ 𝑎)) |
34 | 33 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 〈𝑏, 𝑐〉 → if(𝑤 ∈ 𝑎, 1 , 0 ) = if(〈𝑏, 𝑐〉 ∈ 𝑎, 1 , 0 )) |
35 | 34 | mpompt 7324 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 )) = (𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if(〈𝑏, 𝑐〉 ∈ 𝑎, 1 , 0 )) |
36 | | elmapi 8530 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 ∈ (𝑁 ↑m 𝑁) → 𝑎:𝑁⟶𝑁) |
37 | 36 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) → 𝑎:𝑁⟶𝑁) |
38 | 37 | ffnd 6546 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) → 𝑎 Fn 𝑁) |
39 | 38 | 3ad2ant1 1135 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → 𝑎 Fn 𝑁) |
40 | | simp2 1139 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → 𝑏 ∈ 𝑁) |
41 | | fnopfvb 6766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 Fn 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑎‘𝑏) = 𝑐 ↔ 〈𝑏, 𝑐〉 ∈ 𝑎)) |
42 | 39, 40, 41 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → ((𝑎‘𝑏) = 𝑐 ↔ 〈𝑏, 𝑐〉 ∈ 𝑎)) |
43 | 42 | bicomd 226 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → (〈𝑏, 𝑐〉 ∈ 𝑎 ↔ (𝑎‘𝑏) = 𝑐)) |
44 | 43 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑏 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁) → if(〈𝑏, 𝑐〉 ∈ 𝑎, 1 , 0 ) = if((𝑎‘𝑏) = 𝑐, 1 , 0 )) |
45 | 44 | mpoeq3dva 7288 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) → (𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if(〈𝑏, 𝑐〉 ∈ 𝑎, 1 , 0 )) = (𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 ))) |
46 | 35, 45 | syl5eq 2790 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) → (𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 )) = (𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 ))) |
47 | 46 | fveq2d 6721 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = (𝐷‘(𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 )))) |
48 | | mdetuni.0g |
. . . . . . . . . . . . . . . . . 18
⊢ 0 =
(0g‘𝑅) |
49 | | mdetuni.1r |
. . . . . . . . . . . . . . . . . 18
⊢ 1 =
(1r‘𝑅) |
50 | | mdetuni.pg |
. . . . . . . . . . . . . . . . . 18
⊢ + =
(+g‘𝑅) |
51 | | mdetuni.tg |
. . . . . . . . . . . . . . . . . 18
⊢ · =
(.r‘𝑅) |
52 | | mdetuni.r |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑅 ∈ Ring) |
53 | | mdetuni.ff |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
54 | | mdetuni.al |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
55 | | mdetuni.li |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
56 | | mdetuni.sc |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
57 | | mdetunilem9.id |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐷‘(1r‘𝐴)) = 0 ) |
58 | 11, 13, 12, 48, 49, 50, 51, 6, 52, 53, 54, 55, 56, 57 | mdetunilem8 21516 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑎:𝑁⟶𝑁) → (𝐷‘(𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 ))) = 0 ) |
59 | 36, 58 | sylan2 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) → (𝐷‘(𝑏 ∈ 𝑁, 𝑐 ∈ 𝑁 ↦ if((𝑎‘𝑏) = 𝑐, 1 , 0 ))) = 0 ) |
60 | 47, 59 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ (𝑁 ↑m 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑎, 1 , 0 ))) = 0 ) |
61 | 32, 60 | chvarvv 2007 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁)) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 ) |
62 | 61 | adantrl 716 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁))) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 ) |
63 | 62 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘(𝑤 ∈ (𝑁 × 𝑁) ↦ if(𝑤 ∈ 𝑧, 1 , 0 ))) = 0 ) |
64 | 19, 24, 63 | 3eqtrd 2781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁))) ∧ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 )) → (𝐷‘𝑦) = 0 ) |
65 | 64 | ex 416 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ (𝑁 ↑m 𝑁))) → (∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
66 | 65 | ralrimivva 3112 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
67 | | xpfi 8942 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) |
68 | 6, 6, 67 | syl2anc 587 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 × 𝑁) ∈ Fin) |
69 | | raleq 3319 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑁 × 𝑁) → (∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
70 | 69 | imbi1d 345 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑁 × 𝑁) → ((∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
71 | 70 | 2ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑁 × 𝑁) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
72 | | mdetunilem9.y |
. . . . . . . . . . 11
⊢ 𝑌 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )} |
73 | 71, 72 | elab2g 3589 |
. . . . . . . . . 10
⊢ ((𝑁 × 𝑁) ∈ Fin → ((𝑁 × 𝑁) ∈ 𝑌 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
74 | 68, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 × 𝑁) ∈ 𝑌 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑁 × 𝑁)(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
75 | 66, 74 | mpbird 260 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 × 𝑁) ∈ 𝑌) |
76 | | ssid 3923 |
. . . . . . . . 9
⊢ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) |
77 | 68 | 3ad2ant1 1135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (𝑁 × 𝑁) ∈ Fin) |
78 | | sseq1 3926 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ∅ → (𝑎 ⊆ (𝑁 × 𝑁) ↔ ∅ ⊆ (𝑁 × 𝑁))) |
79 | 78 | 3anbi2d 1443 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → ((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ ∅ ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌))) |
80 | | eleq1 2825 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ∅ → (𝑎 ∈ 𝑌 ↔ ∅ ∈ 𝑌)) |
81 | 80 | notbid 321 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → (¬ 𝑎 ∈ 𝑌 ↔ ¬ ∅ ∈ 𝑌)) |
82 | 79, 81 | imbi12d 348 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎 ∈ 𝑌) ↔ ((𝜑 ∧ ∅ ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ ∅ ∈
𝑌))) |
83 | | sseq1 3926 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (𝑎 ⊆ (𝑁 × 𝑁) ↔ 𝑏 ⊆ (𝑁 × 𝑁))) |
84 | 83 | 3anbi2d 1443 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → ((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌))) |
85 | | eleq1 2825 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑏 → (𝑎 ∈ 𝑌 ↔ 𝑏 ∈ 𝑌)) |
86 | 85 | notbid 321 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (¬ 𝑎 ∈ 𝑌 ↔ ¬ 𝑏 ∈ 𝑌)) |
87 | 84, 86 | imbi12d 348 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎 ∈ 𝑌) ↔ ((𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌))) |
88 | | sseq1 3926 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ⊆ (𝑁 × 𝑁) ↔ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁))) |
89 | 88 | 3anbi2d 1443 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌))) |
90 | | eleq1 2825 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ∈ 𝑌 ↔ (𝑏 ∪ {𝑐}) ∈ 𝑌)) |
91 | 90 | notbid 321 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (¬ 𝑎 ∈ 𝑌 ↔ ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)) |
92 | 89, 91 | imbi12d 348 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎 ∈ 𝑌) ↔ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))) |
93 | | sseq1 3926 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑁 × 𝑁) → (𝑎 ⊆ (𝑁 × 𝑁) ↔ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁))) |
94 | 93 | 3anbi2d 1443 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑁 × 𝑁) → ((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) ↔ (𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌))) |
95 | | eleq1 2825 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑁 × 𝑁) → (𝑎 ∈ 𝑌 ↔ (𝑁 × 𝑁) ∈ 𝑌)) |
96 | 95 | notbid 321 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑁 × 𝑁) → (¬ 𝑎 ∈ 𝑌 ↔ ¬ (𝑁 × 𝑁) ∈ 𝑌)) |
97 | 94, 96 | imbi12d 348 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑁 × 𝑁) → (((𝜑 ∧ 𝑎 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑎 ∈ 𝑌) ↔ ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑁 × 𝑁) ∈ 𝑌))) |
98 | | simp3 1140 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∅ ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ ∅ ∈
𝑌) |
99 | | ssun1 4086 |
. . . . . . . . . . . . . . . 16
⊢ 𝑏 ⊆ (𝑏 ∪ {𝑐}) |
100 | | sstr2 3908 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ⊆ (𝑏 ∪ {𝑐}) → ((𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) → 𝑏 ⊆ (𝑁 × 𝑁))) |
101 | 99, 100 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) → 𝑏 ⊆ (𝑁 × 𝑁)) |
102 | 101 | 3anim2i 1155 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌)) |
103 | 102 | imim1i 63 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌)) |
104 | | simpl1 1193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝜑) |
105 | | simpl2 1194 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) |
106 | | simprll 779 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑎 ∈ 𝐵) |
107 | 11, 12, 13 | matbas2i 21319 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ (𝐾 ↑m (𝑁 × 𝑁))) |
108 | | elmapi 8530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 ∈ (𝐾 ↑m (𝑁 × 𝑁)) → 𝑎:(𝑁 × 𝑁)⟶𝐾) |
109 | 107, 108 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 ∈ 𝐵 → 𝑎:(𝑁 × 𝑁)⟶𝐾) |
110 | 109 | 3ad2ant3 1137 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑎:(𝑁 × 𝑁)⟶𝐾) |
111 | 110 | feqmptd 6780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑎 = (𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒))) |
112 | 111 | reseq1d 5850 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ({(1st ‘𝑐)} × 𝑁))) |
113 | 52 | 3ad2ant1 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Ring) |
114 | | ringgrp 19567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
115 | 113, 114 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Grp) |
116 | 115 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → 𝑅 ∈ Grp) |
117 | 110 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → 𝑎:(𝑁 × 𝑁)⟶𝐾) |
118 | | simp2 1139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) |
119 | 118 | unssbd 4102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → {𝑐} ⊆ (𝑁 × 𝑁)) |
120 | | vex 3412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ 𝑐 ∈ V |
121 | 120 | snss 4699 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑐 ∈ (𝑁 × 𝑁) ↔ {𝑐} ⊆ (𝑁 × 𝑁)) |
122 | 119, 121 | sylibr 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑐 ∈ (𝑁 × 𝑁)) |
123 | | xp1st 7793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑐 ∈ (𝑁 × 𝑁) → (1st ‘𝑐) ∈ 𝑁) |
124 | 122, 123 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (1st ‘𝑐) ∈ 𝑁) |
125 | 124 | snssd 4722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → {(1st ‘𝑐)} ⊆ 𝑁) |
126 | | xpss1 5570 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
({(1st ‘𝑐)} ⊆ 𝑁 → ({(1st ‘𝑐)} × 𝑁) ⊆ (𝑁 × 𝑁)) |
127 | 125, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ({(1st ‘𝑐)} × 𝑁) ⊆ (𝑁 × 𝑁)) |
128 | 127 | sselda 3901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → 𝑒 ∈ (𝑁 × 𝑁)) |
129 | 117, 128 | ffvelrnd 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (𝑎‘𝑒) ∈ 𝐾) |
130 | 12, 49 | ringidcl 19586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑅 ∈ Ring → 1 ∈ 𝐾) |
131 | 113, 130 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 1 ∈ 𝐾) |
132 | 12, 48 | ring0cl 19587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑅 ∈ Ring → 0 ∈ 𝐾) |
133 | 113, 132 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 0 ∈ 𝐾) |
134 | 131, 133 | ifcld 4485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) |
135 | 134 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) |
136 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(-g‘𝑅) = (-g‘𝑅) |
137 | 12, 50, 136 | grpnpcan 18455 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Grp ∧ (𝑎‘𝑒) ∈ 𝐾 ∧ if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) → (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 )) = (𝑎‘𝑒)) |
138 | 116, 129,
135, 137 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 )) = (𝑎‘𝑒)) |
139 | 138 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (𝑎‘𝑒) = (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 ))) |
140 | 139 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (𝑎‘𝑒) = (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 ))) |
141 | | iftrue 4445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = 𝑐 → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 ))) |
142 | | iftrue 4445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = 𝑐 → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = if(𝑒 ∈ 𝑑, 1 , 0 )) |
143 | 141, 142 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 = 𝑐 → (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 ))) |
144 | 143 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) + if(𝑒 ∈ 𝑑, 1 , 0 ))) |
145 | 140, 144 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (𝑎‘𝑒) = (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
146 | 12, 50, 48 | grplid 18397 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Grp ∧ (𝑎‘𝑒) ∈ 𝐾) → ( 0 + (𝑎‘𝑒)) = (𝑎‘𝑒)) |
147 | 116, 129,
146 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → ( 0 + (𝑎‘𝑒)) = (𝑎‘𝑒)) |
148 | 147 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (𝑎‘𝑒) = ( 0 + (𝑎‘𝑒))) |
149 | 148 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (𝑎‘𝑒) = ( 0 + (𝑎‘𝑒))) |
150 | | iffalse 4448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑒 = 𝑐 → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = 0 ) |
151 | | iffalse 4448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑒 = 𝑐 → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
152 | 150, 151 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬
𝑒 = 𝑐 → (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = ( 0 + (𝑎‘𝑒))) |
153 | 152 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = ( 0 + (𝑎‘𝑒))) |
154 | 149, 153 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (𝑎‘𝑒) = (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
155 | 145, 154 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (𝑎‘𝑒) = (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
156 | 155 | mpteq2dva 5150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (𝑎‘𝑒)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
157 | | snfi 8721 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
{(1st ‘𝑐)} ∈ Fin |
158 | 6 | 3ad2ant1 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑁 ∈ Fin) |
159 | | xpfi 8942 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(({(1st ‘𝑐)} ∈ Fin ∧ 𝑁 ∈ Fin) → ({(1st
‘𝑐)} × 𝑁) ∈ Fin) |
160 | 157, 158,
159 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ({(1st ‘𝑐)} × 𝑁) ∈ Fin) |
161 | | ovex 7246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) ∈
V |
162 | 48 | fvexi 6731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 0 ∈
V |
163 | 161, 162 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) ∈
V |
164 | 163 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) ∈
V) |
165 | 49 | fvexi 6731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 1 ∈
V |
166 | 165, 162 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ if(𝑒 ∈ 𝑑, 1 , 0 ) ∈
V |
167 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑎‘𝑒) ∈ V |
168 | 166, 167 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) ∈ V |
169 | 168 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) ∈ V) |
170 | | xp1st 7793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 ∈ ({(1st
‘𝑐)} × 𝑁) → (1st
‘𝑒) ∈
{(1st ‘𝑐)}) |
171 | | elsni 4558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((1st ‘𝑒) ∈ {(1st ‘𝑐)} → (1st
‘𝑒) = (1st
‘𝑐)) |
172 | | iftrue 4445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((1st ‘𝑒) = (1st ‘𝑐) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 )) |
173 | 170, 171,
172 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 ∈ ({(1st
‘𝑐)} × 𝑁) → if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 )) |
174 | 173 | mpteq2ia 5146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 ∈ ({(1st
‘𝑐)} × 𝑁) ↦ if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 )) |
175 | 174 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ))) |
176 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
177 | 160, 164,
169, 175, 176 | offval2 7488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∘f + (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) + if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
178 | 156, 177 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (𝑎‘𝑒)) = ((𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∘f + (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
179 | 127 | resmptd 5908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ({(1st ‘𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (𝑎‘𝑒))) |
180 | 127 | resmptd 5908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) |
181 | 127 | resmptd 5908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
182 | 180, 181 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) = ((𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∘f + (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
183 | 178, 179,
182 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
184 | 112, 183 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
185 | 111 | reseq1d 5850 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
186 | | xp1st 7793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) → (1st ‘𝑒) ∈ (𝑁 ∖ {(1st ‘𝑐)})) |
187 | | eldifsni 4703 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((1st ‘𝑒) ∈ (𝑁 ∖ {(1st ‘𝑐)}) → (1st
‘𝑒) ≠
(1st ‘𝑐)) |
188 | 186, 187 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) → (1st ‘𝑒) ≠ (1st
‘𝑐)) |
189 | 188 | neneqd 2945 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) → ¬ (1st ‘𝑒) = (1st ‘𝑐)) |
190 | 189 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → ¬ (1st ‘𝑒) = (1st ‘𝑐)) |
191 | 190 | iffalsed 4450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
192 | 191 | mpteq2dva 5150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ (𝑎‘𝑒))) |
193 | | difss 4046 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∖ {(1st
‘𝑐)}) ⊆ 𝑁 |
194 | | xpss1 5570 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∖ {(1st
‘𝑐)}) ⊆ 𝑁 → ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁)) |
195 | 193, 194 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) |
196 | | resmpt 5905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) |
197 | 195, 196 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) |
198 | | resmpt 5905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ (𝑎‘𝑒))) |
199 | 195, 198 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ (𝑎‘𝑒))) |
200 | 192, 197,
199 | 3eqtr4rd 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
201 | 185, 200 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
202 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑒 = 𝑐 → (1st ‘𝑒) = (1st ‘𝑐)) |
203 | 190, 202 | nsyl 142 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → ¬ 𝑒 = 𝑐) |
204 | 203 | iffalsed 4450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
205 | 204 | mpteq2dva 5150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ (𝑎‘𝑒))) |
206 | | resmpt 5905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
207 | 195, 206 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) |
208 | 205, 207,
199 | 3eqtr4rd 2788 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ (𝑎‘𝑒)) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
209 | 185, 208 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
210 | 134 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) |
211 | 110 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → (𝑎‘𝑒) ∈ 𝐾) |
212 | 210, 211 | ifcld 4485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) ∈ 𝐾) |
213 | 212 | fmpttd 6932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾) |
214 | 12 | fvexi 6731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝐾 ∈ V |
215 | 67 | anidms 570 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
216 | 158, 215 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
217 | | elmapg 8521 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
218 | 214, 216,
217 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
219 | 213, 218 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑m (𝑁 × 𝑁))) |
220 | 11, 12 | matbas2 21318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
221 | 158, 113,
220 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝐾 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
222 | 221, 13 | eqtr4di 2796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝐾 ↑m (𝑁 × 𝑁)) = 𝐵) |
223 | 219, 222 | eleqtrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
224 | | simp3 1140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
225 | 115 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → 𝑅 ∈ Grp) |
226 | 12, 136 | grpsubcl 18443 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑅 ∈ Grp ∧ (𝑎‘𝑒) ∈ 𝐾 ∧ if(𝑒 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) |
227 | 225, 211,
210, 226 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) |
228 | 133 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → 0 ∈ 𝐾) |
229 | 227, 228 | ifcld 4485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) ∈ 𝐾) |
230 | 229, 211 | ifcld 4485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) ∈ 𝐾) |
231 | 230 | fmpttd 6932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾) |
232 | | elmapg 8521 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
233 | 214, 216,
232 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
234 | 231, 233 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑m (𝑁 × 𝑁))) |
235 | 234, 222 | eleqtrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
236 | 55 | 3ad2ant1 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
237 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = 𝑎 → (𝑥 ↾ ({𝑤} × 𝑁)) = (𝑎 ↾ ({𝑤} × 𝑁))) |
238 | 237 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = 𝑎 → ((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))))) |
239 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = 𝑎 → (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
240 | 239 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = 𝑎 → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
241 | 239 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = 𝑎 → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
242 | 238, 240,
241 | 3anbi123d 1438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑎 → (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
243 | | fveqeq2 6726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = 𝑎 → ((𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)) ↔ (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
244 | 242, 243 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 𝑎 → ((((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧))) ↔ (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧))))) |
245 | 244 | 2ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 = 𝑎 → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧))))) |
246 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝑦 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) |
247 | 246 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁)))) |
248 | 247 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))))) |
249 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
250 | 249 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
251 | 248, 250 | 3anbi12d 1439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
252 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝐷‘𝑦) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))))) |
253 | 252 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑦) + (𝐷‘𝑧)) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧))) |
254 | 253 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧)) ↔ (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)))) |
255 | 251, 254 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧))) ↔ (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧))))) |
256 | 255 | 2ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘𝑦) + (𝐷‘𝑧))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧))))) |
257 | 245, 256 | rspc2va 3548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑎 ∈ 𝐵 ∧ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)))) |
258 | 224, 235,
236, 257 | syl21anc 838 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)))) |
259 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (𝑧 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) |
260 | 259 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)))) |
261 | 260 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))))) |
262 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
263 | 262 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
264 | 261, 263 | 3anbi13d 1440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
265 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (𝐷‘𝑧) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) |
266 | 265 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
267 | 266 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)) ↔ (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))))) |
268 | 264, 267 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧))) ↔ (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))))) |
269 | | sneq 4551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = (1st ‘𝑐) → {𝑤} = {(1st ‘𝑐)}) |
270 | 269 | xpeq1d 5580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ({𝑤} × 𝑁) = ({(1st ‘𝑐)} × 𝑁)) |
271 | 270 | reseq2d 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (𝑎 ↾ ({𝑤} × 𝑁)) = (𝑎 ↾ ({(1st ‘𝑐)} × 𝑁))) |
272 | 270 | reseq2d 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) |
273 | 270 | reseq2d 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) |
274 | 272, 273 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
275 | 271, 274 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = (1st ‘𝑐) → ((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ↔ (𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))))) |
276 | 269 | difeq2d 4037 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = (1st ‘𝑐) → (𝑁 ∖ {𝑤}) = (𝑁 ∖ {(1st ‘𝑐)})) |
277 | 276 | xpeq1d 5580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((𝑁 ∖ {𝑤}) × 𝑁) = ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) |
278 | 277 | reseq2d 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
279 | 277 | reseq2d 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
280 | 278, 279 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = (1st ‘𝑐) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)))) |
281 | 277 | reseq2d 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
282 | 278, 281 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = (1st ‘𝑐) → ((𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)))) |
283 | 275, 280,
282 | 3anbi123d 1438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = (1st ‘𝑐) → (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ ((𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))))) |
284 | 283 | imbi1d 345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 = (1st ‘𝑐) → ((((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) ↔ (((𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))))) |
285 | 268, 284 | rspc2va 3548 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ (1st ‘𝑐) ∈ 𝑁) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑎 ↾ ({𝑤} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘𝑧)))) → (((𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))))) |
286 | 223, 124,
258, 285 | syl21anc 838 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (((𝑎 ↾ ({(1st ‘𝑐)} × 𝑁)) = (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) ∘f + ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) ∧ (𝑎 ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))))) |
287 | 184, 201,
209, 286 | mp3and 1466 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
288 | 104, 105,
106, 287 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝐷‘𝑎) = ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
289 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑒 = 𝑐 → (𝑎‘𝑒) = (𝑎‘𝑐)) |
290 | | elequ1 2117 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑒 = 𝑐 → (𝑒 ∈ 𝑑 ↔ 𝑐 ∈ 𝑑)) |
291 | 290 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑒 = 𝑐 → if(𝑒 ∈ 𝑑, 1 , 0 ) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
292 | 289, 291 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = 𝑐 → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
293 | 292 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
294 | 110, 122 | ffvelrnd 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑎‘𝑐) ∈ 𝐾) |
295 | 131, 133 | ifcld 4485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → if(𝑐 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) |
296 | 12, 136 | grpsubcl 18443 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑅 ∈ Grp ∧ (𝑎‘𝑐) ∈ 𝐾 ∧ if(𝑐 ∈ 𝑑, 1 , 0 ) ∈ 𝐾) → ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) |
297 | 115, 294,
295, 296 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) |
298 | 12, 51, 49 | ringridm 19590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Ring ∧ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 ) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
299 | 113, 297,
298 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 ) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
300 | 299 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 ) = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
301 | 293, 300 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 )) |
302 | 141 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 ))) |
303 | | iftrue 4445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑒 = 𝑐 → if(𝑒 = 𝑐, 1 , 0 ) = 1 ) |
304 | 303 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑒 = 𝑐 → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 )) |
305 | 304 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 1 )) |
306 | 301, 302,
305 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 ))) |
307 | 12, 51, 48 | ringrz 19606 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑅 ∈ Ring ∧ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) = 0 ) |
308 | 113, 297,
307 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) = 0 ) |
309 | 308 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 0 = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
310 | 309 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → 0 = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
311 | 150 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = 0 ) |
312 | | iffalse 4448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
𝑒 = 𝑐 → if(𝑒 = 𝑐, 1 , 0 ) = 0 ) |
313 | 312 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬
𝑒 = 𝑐 → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
314 | 313 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 )) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
315 | 310, 311,
314 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) ∧ ¬ 𝑒 = 𝑐) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 ))) |
316 | 306, 315 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 ))) |
317 | 170 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (1st ‘𝑒) ∈ {(1st
‘𝑐)}) |
318 | 317, 171 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (1st ‘𝑒) = (1st ‘𝑐)) |
319 | 318 | iftrued 4447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 )) |
320 | 318 | iftrued 4447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) = if(𝑒 = 𝑐, 1 , 0 )) |
321 | 320 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if(𝑒 = 𝑐, 1 , 0 ))) |
322 | 316, 319,
321 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
323 | 322 | mpteq2dva 5150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) |
324 | | ovexd 7248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈
V) |
325 | 165, 162 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ if(𝑒 = 𝑐, 1 , 0 ) ∈
V |
326 | 325, 167 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) ∈ V |
327 | 326 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ({(1st ‘𝑐)} × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) ∈ V) |
328 | | fconstmpt 5611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))) |
329 | 328 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )))) |
330 | 127 | resmptd 5908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
331 | 160, 324,
327, 329, 330 | offval2 7488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) = (𝑒 ∈ ({(1st ‘𝑐)} × 𝑁) ↦ (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · if((1st
‘𝑒) = (1st
‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) |
332 | 323, 180,
331 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
333 | | iffalse 4448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
(1st ‘𝑒) =
(1st ‘𝑐)
→ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
334 | | iffalse 4448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (¬
(1st ‘𝑒) =
(1st ‘𝑐)
→ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) = (𝑎‘𝑒)) |
335 | 333, 334 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (¬
(1st ‘𝑒) =
(1st ‘𝑐)
→ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) |
336 | 190, 335 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)) = if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) |
337 | 336 | mpteq2dva 5150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
338 | | resmpt 5905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑁 ∖ {(1st
‘𝑐)}) × 𝑁) ⊆ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
339 | 195, 338 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = (𝑒 ∈ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) |
340 | 337, 197,
339 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
341 | 131, 133 | ifcld 4485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → if(𝑒 = 𝑐, 1 , 0 ) ∈ 𝐾) |
342 | 341 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if(𝑒 = 𝑐, 1 , 0 ) ∈ 𝐾) |
343 | 342, 211 | ifcld 4485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑒 ∈ (𝑁 × 𝑁)) → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) ∈ 𝐾) |
344 | 343 | fmpttd 6932 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾) |
345 | | elmapg 8521 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ Fin) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
346 | 214, 216,
345 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))):(𝑁 × 𝑁)⟶𝐾)) |
347 | 344, 346 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ (𝐾 ↑m (𝑁 × 𝑁))) |
348 | 347, 222 | eleqtrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
349 | 56 | 3ad2ant1 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
350 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) |
351 | 350 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))))) |
352 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
353 | 352 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
354 | 351, 353 | anbi12d 634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
355 | | fveqeq2 6726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)) ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧)))) |
356 | 354, 355 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → ((((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧))))) |
357 | 356 | 2ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧))))) |
358 | | sneq 4551 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → {𝑦} = {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) |
359 | 358 | xpeq2d 5581 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (({𝑤} × 𝑁) × {𝑦}) = (({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})) |
360 | 359 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁)))) |
361 | 360 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))))) |
362 | 361 | anbi1d 633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
363 | | oveq1 7220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (𝑦 · (𝐷‘𝑧)) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧))) |
364 | 363 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧)) ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)))) |
365 | 362, 364 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧))))) |
366 | 365 | 2ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) → (∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (𝑦 · (𝐷‘𝑧))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧))))) |
367 | 357, 366 | rspc2va 3548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ ((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) ∈ 𝐾) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)))) |
368 | 235, 297,
349, 367 | syl21anc 838 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)))) |
369 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (𝑧 ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) |
370 | 369 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)))) |
371 | 370 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))))) |
372 | | reseq1 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) |
373 | 372 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)))) |
374 | 371, 373 | anbi12d 634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))))) |
375 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (𝐷‘𝑧) = (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) |
376 | 375 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))) |
377 | 376 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)) ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))))) |
378 | 374, 377 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))))) |
379 | 270 | xpeq1d 5580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = (1st ‘𝑐) → (({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) = (({(1st
‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))})) |
380 | 270 | reseq2d 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) |
381 | 379, 380 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)))) |
382 | 272, 381 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))))) |
383 | 277 | reseq2d 5851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = (1st ‘𝑐) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) |
384 | 279, 383 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = (1st ‘𝑐) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)))) |
385 | 382, 384 | anbi12d 634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 = (1st ‘𝑐) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) ↔ (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))))) |
386 | 385 | imbi1d 345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 = (1st ‘𝑐) → (((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))) ↔ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))))) |
387 | 378, 386 | rspc2va 3548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ (1st ‘𝑐) ∈ 𝑁) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
(𝑧 ↾ ({𝑤} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘𝑧)))) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))))) |
388 | 348, 124,
368, 387 | syl21anc 838 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁)) = ((({(1st ‘𝑐)} × 𝑁) × {((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 ))}) ∘f
·
((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ({(1st ‘𝑐)} × 𝑁))) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁)) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ↾ ((𝑁 ∖ {(1st ‘𝑐)}) × 𝑁))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))))) |
389 | 332, 340,
388 | mp2and 699 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))))) |
390 | 389 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
391 | 104, 105,
106, 390 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, ((𝑎‘𝑒)(-g‘𝑅)if(𝑒 ∈ 𝑑, 1 , 0 )), 0 ), (𝑎‘𝑒)))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))))) |
392 | | simpl3 1195 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑏 ∪ {𝑐}) ∈ 𝑌) |
393 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑑 ∈ (𝑁 ↑m 𝑁)) |
394 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
395 | | ralss 3971 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ⊆ (𝑏 ∪ {𝑐}) → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )))) |
396 | 99, 395 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑤 ∈
𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
397 | | iftrue 4445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((1st ‘𝑤) = (1st ‘𝑐) → if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 = 𝑐, 1 , 0 )) |
398 | 397 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → if((1st
‘𝑤) = (1st
‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 = 𝑐, 1 , 0 )) |
399 | | ibar 532 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
((1st ‘𝑤) = (1st ‘𝑐) → ((2nd ‘𝑤) = (2nd ‘𝑐) ↔ ((1st
‘𝑤) = (1st
‘𝑐) ∧
(2nd ‘𝑤) =
(2nd ‘𝑐)))) |
400 | 399 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((2nd
‘𝑤) = (2nd
‘𝑐) ↔
((1st ‘𝑤)
= (1st ‘𝑐)
∧ (2nd ‘𝑤) = (2nd ‘𝑐)))) |
401 | | relxp 5569 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ Rel
(𝑁 × 𝑁) |
402 | | simpl2 1194 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) → (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) |
403 | 402 | sselda 3901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → 𝑤 ∈ (𝑁 × 𝑁)) |
404 | 403 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑤 ∈ (𝑁 × 𝑁)) |
405 | | 1st2nd 7810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((Rel
(𝑁 × 𝑁) ∧ 𝑤 ∈ (𝑁 × 𝑁)) → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
406 | 401, 404,
405 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
407 | 406 | eleq1d 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
408 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) → 𝑑 ∈ (𝑁 ↑m 𝑁)) |
409 | | elmapi 8530 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑑 ∈ (𝑁 ↑m 𝑁) → 𝑑:𝑁⟶𝑁) |
410 | 409 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) → 𝑑:𝑁⟶𝑁) |
411 | 124 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) → (1st ‘𝑐) ∈ 𝑁) |
412 | | xp2nd 7794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (𝑐 ∈ (𝑁 × 𝑁) → (2nd ‘𝑐) ∈ 𝑁) |
413 | 122, 412 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → (2nd ‘𝑐) ∈ 𝑁) |
414 | 413 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) → (2nd ‘𝑐) ∈ 𝑁) |
415 | | fsets 16722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑑 ∈ (𝑁 ↑m 𝑁) ∧ 𝑑:𝑁⟶𝑁) ∧ (1st ‘𝑐) ∈ 𝑁 ∧ (2nd ‘𝑐) ∈ 𝑁) → (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉):𝑁⟶𝑁) |
416 | 408, 410,
411, 414, 415 | syl211anc 1378 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) → (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉):𝑁⟶𝑁) |
417 | 416 | ffnd 6546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) → (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) Fn 𝑁) |
418 | 417 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) Fn 𝑁) |
419 | | xp1st 7793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑤 ∈ (𝑁 × 𝑁) → (1st ‘𝑤) ∈ 𝑁) |
420 | 403, 419 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → (1st ‘𝑤) ∈ 𝑁) |
421 | 420 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (1st
‘𝑤) ∈ 𝑁) |
422 | | fnopfvb 6766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉) Fn 𝑁 ∧ (1st
‘𝑤) ∈ 𝑁) → (((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑤)
↔ 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
423 | 418, 421,
422 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑤)
↔ 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
424 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((1st ‘𝑤) = (1st ‘𝑐) → ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) = ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉)‘(1st ‘𝑐))) |
425 | 424 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) = ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉)‘(1st ‘𝑐))) |
426 | | vex 3412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ 𝑑 ∈ V |
427 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(1st ‘𝑐) ∈ V |
428 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(2nd ‘𝑐) ∈ V |
429 | | fvsetsid 16721 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝑑 ∈ V ∧ (1st
‘𝑐) ∈ V ∧
(2nd ‘𝑐)
∈ V) → ((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st ‘𝑐)) = (2nd
‘𝑐)) |
430 | 426, 427,
428, 429 | mp3an 1463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉)‘(1st ‘𝑐)) = (2nd
‘𝑐) |
431 | 425, 430 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑐)) |
432 | 431 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑤)
↔ (2nd ‘𝑐) = (2nd ‘𝑤))) |
433 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
((2nd ‘𝑐) = (2nd ‘𝑤) ↔ (2nd ‘𝑤) = (2nd ‘𝑐)) |
434 | 432, 433 | bitrdi 290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉)‘(1st
‘𝑤)) =
(2nd ‘𝑤)
↔ (2nd ‘𝑤) = (2nd ‘𝑐))) |
435 | 407, 423,
434 | 3bitr2rd 311 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((2nd
‘𝑤) = (2nd
‘𝑐) ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
436 | 122 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑐 ∈ (𝑁 × 𝑁)) |
437 | | xpopth 7802 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ 𝑐 ∈ (𝑁 × 𝑁)) → (((1st ‘𝑤) = (1st ‘𝑐) ∧ (2nd
‘𝑤) = (2nd
‘𝑐)) ↔ 𝑤 = 𝑐)) |
438 | 404, 436,
437 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (((1st
‘𝑤) = (1st
‘𝑐) ∧
(2nd ‘𝑤) =
(2nd ‘𝑐))
↔ 𝑤 = 𝑐)) |
439 | 400, 435,
438 | 3bitr3rd 313 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑤 = 𝑐 ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
440 | 439 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → if(𝑤 = 𝑐, 1 , 0 ) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
441 | 398, 440 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → if((1st
‘𝑤) = (1st
‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
442 | 441 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
443 | | elsni 4558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑤 ∈ {𝑐} → 𝑤 = 𝑐) |
444 | 443 | fveq2d 6721 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑤 ∈ {𝑐} → (1st ‘𝑤) = (1st ‘𝑐)) |
445 | 444 | con3i 157 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ ¬ 𝑤 ∈
{𝑐}) |
446 | 445 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑤 ∈ (𝑏 ∪ {𝑐}) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → ¬ 𝑤 ∈ {𝑐}) |
447 | | elun 4063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑤 ∈ (𝑏 ∪ {𝑐}) ↔ (𝑤 ∈ 𝑏 ∨ 𝑤 ∈ {𝑐})) |
448 | 447 | biimpi 219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑤 ∈ (𝑏 ∪ {𝑐}) → (𝑤 ∈ 𝑏 ∨ 𝑤 ∈ {𝑐})) |
449 | 448 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑤 ∈ (𝑏 ∪ {𝑐}) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑤 ∈ 𝑏 ∨ 𝑤 ∈ {𝑐})) |
450 | | orel2 891 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (¬
𝑤 ∈ {𝑐} → ((𝑤 ∈ 𝑏 ∨ 𝑤 ∈ {𝑐}) → 𝑤 ∈ 𝑏)) |
451 | 446, 449,
450 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑤 ∈ (𝑏 ∪ {𝑐}) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑤 ∈ 𝑏) |
452 | 451 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → 𝑤 ∈ 𝑏) |
453 | | iffalse 4448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
454 | 453 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → if((1st
‘𝑤) = (1st
‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
455 | | setsres 16731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑑 ∈ V → ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉) ↾ (V
∖ {(1st ‘𝑐)})) = (𝑑 ↾ (V ∖ {(1st
‘𝑐)}))) |
456 | 455 | eleq2d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑑 ∈ V →
(〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖
{(1st ‘𝑐)})) ↔ 〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 ↾ (V ∖
{(1st ‘𝑐)})))) |
457 | 426, 456 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖ {(1st
‘𝑐)})) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 ↾ (V ∖ {(1st
‘𝑐)})))) |
458 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
(1st ‘𝑤) ∈ V |
459 | 458 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ (1st ‘𝑤) ∈ V) |
460 | | neqne 2948 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ (1st ‘𝑤) ≠ (1st ‘𝑐)) |
461 | | eldifsn 4700 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((1st ‘𝑤) ∈ (V ∖ {(1st
‘𝑐)}) ↔
((1st ‘𝑤)
∈ V ∧ (1st ‘𝑤) ≠ (1st ‘𝑐))) |
462 | 459, 460,
461 | sylanbrc 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (¬
(1st ‘𝑤) =
(1st ‘𝑐)
→ (1st ‘𝑤) ∈ (V ∖ {(1st
‘𝑐)})) |
463 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(2nd ‘𝑤) ∈ V |
464 | 463 | opres 5861 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((1st ‘𝑤) ∈ (V ∖ {(1st
‘𝑐)}) →
(〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖
{(1st ‘𝑐)})) ↔ 〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
465 | 464 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖ {(1st
‘𝑐)})) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
466 | | 1st2nd2 7800 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑤 ∈ (𝑁 × 𝑁) → 𝑤 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
467 | 466 | eleq1d 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑤 ∈ (𝑁 × 𝑁) → (𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
468 | 467 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
469 | 465, 468 | bitr4d 285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖ {(1st
‘𝑐)})) ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
470 | 403, 462,
469 | syl2an 599 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
((𝑑 sSet
〈(1st ‘𝑐), (2nd ‘𝑐)〉) ↾ (V ∖ {(1st
‘𝑐)})) ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
471 | 463 | opres 5861 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((1st ‘𝑤) ∈ (V ∖ {(1st
‘𝑐)}) →
(〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ (𝑑 ↾ (V ∖ {(1st
‘𝑐)})) ↔
〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ 𝑑)) |
472 | 471 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 ↾ (V ∖
{(1st ‘𝑐)})) ↔ 〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
𝑑)) |
473 | 466 | eleq1d 2822 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑤 ∈ (𝑁 × 𝑁) → (𝑤 ∈ 𝑑 ↔ 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ 𝑑)) |
474 | 473 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (𝑤 ∈ 𝑑 ↔ 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ∈ 𝑑)) |
475 | 472, 474 | bitr4d 285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑤 ∈ (𝑁 × 𝑁) ∧ (1st ‘𝑤) ∈ (V ∖
{(1st ‘𝑐)})) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 ↾ (V ∖
{(1st ‘𝑐)})) ↔ 𝑤 ∈ 𝑑)) |
476 | 403, 462,
475 | syl2an 599 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (〈(1st
‘𝑤), (2nd
‘𝑤)〉 ∈
(𝑑 ↾ (V ∖
{(1st ‘𝑐)})) ↔ 𝑤 ∈ 𝑑)) |
477 | 457, 470,
476 | 3bitr3rd 313 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → (𝑤 ∈ 𝑑 ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
478 | 477 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → if(𝑤 ∈ 𝑑, 1 , 0 ) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
479 | 454, 478 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → if((1st
‘𝑤) = (1st
‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
480 | | ifeq2 4444 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 ))) |
481 | 480 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) →
(if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) ↔
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
482 | 479, 481 | syl5ibrcom 250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
483 | 452, 482 | embantd 59 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) ∧ ¬ (1st ‘𝑤) = (1st ‘𝑐)) → ((𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
484 | 442, 483 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → ((𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) →
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
485 | | fveqeq2 6726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑒 = 𝑤 → ((1st ‘𝑒) = (1st ‘𝑐) ↔ (1st
‘𝑤) = (1st
‘𝑐))) |
486 | | equequ1 2033 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑒 = 𝑤 → (𝑒 = 𝑐 ↔ 𝑤 = 𝑐)) |
487 | 486 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑒 = 𝑤 → if(𝑒 = 𝑐, 1 , 0 ) = if(𝑤 = 𝑐, 1 , 0 )) |
488 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑒 = 𝑤 → (𝑎‘𝑒) = (𝑎‘𝑤)) |
489 | 485, 487,
488 | ifbieq12d 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑒 = 𝑤 → if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)) = if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤))) |
490 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) |
491 | 165, 162 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ if(𝑤 = 𝑐, 1 , 0 ) ∈
V |
492 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑎‘𝑤) ∈ V |
493 | 491, 492 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) ∈ V |
494 | 489, 490,
493 | fvmpt 6818 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑤 ∈ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤))) |
495 | 494 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑤 ∈ (𝑁 × 𝑁) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) ↔
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
496 | 403, 495 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) ↔
if((1st ‘𝑤) = (1st ‘𝑐), if(𝑤 = 𝑐, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
497 | 484, 496 | sylibrd 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ 𝑤 ∈ (𝑏 ∪ {𝑐})) → ((𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
498 | 497 | ralimdva 3100 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑤 ∈ 𝑏 → (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
499 | 396, 498 | syl5bi 245 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
500 | 499 | impr 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ (𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
501 | 500 | 3adantr1 1171 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
502 | 348 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
503 | | simpr2 1197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑑 ∈ (𝑁 ↑m 𝑁)) |
504 | 503, 409 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑑:𝑁⟶𝑁) |
505 | 124 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (1st
‘𝑐) ∈ 𝑁) |
506 | 413 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (2nd
‘𝑐) ∈ 𝑁) |
507 | 503, 504,
505, 506, 415 | syl211anc 1378 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉):𝑁⟶𝑁) |
508 | 158, 158 | elmapd 8522 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ∈ (𝑁 ↑m 𝑁) ↔ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉):𝑁⟶𝑁)) |
509 | 508 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉) ∈
(𝑁 ↑m 𝑁) ↔ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉):𝑁⟶𝑁)) |
510 | 507, 509 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑑 sSet 〈(1st
‘𝑐), (2nd
‘𝑐)〉) ∈
(𝑁 ↑m 𝑁)) |
511 | | simpr1 1196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑏 ∪ {𝑐}) ∈ 𝑌) |
512 | | raleq 3319 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑥 = (𝑏 ∪ {𝑐}) → (∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
513 | 512 | imbi1d 345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑥 = (𝑏 ∪ {𝑐}) → ((∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
514 | 513 | 2ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑥 = (𝑏 ∪ {𝑐}) → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
515 | 514, 72 | elab2g 3589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑏 ∪ {𝑐}) ∈ 𝑌 → ((𝑏 ∪ {𝑐}) ∈ 𝑌 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
516 | 515 | ibi 270 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑏 ∪ {𝑐}) ∈ 𝑌 → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
517 | 511, 516 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
518 | | fveq1 6716 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (𝑦‘𝑤) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤)) |
519 | 518 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
520 | 519 | ralbidv 3118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
521 | | fveqeq2 6726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑦) = 0 ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
522 | 520, 521 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 ))) |
523 | | eleq2 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉))) |
524 | 523 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → if(𝑤 ∈ 𝑧, 1 , 0 ) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 )) |
525 | 524 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
526 | 525 | ralbidv 3118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ))) |
527 | 526 | imbi1d 345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 ))) |
528 | 522, 527 | rspc2va 3548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉) ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
529 | 502, 510,
517, 528 | syl21anc 838 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ (𝑑 sSet 〈(1st ‘𝑐), (2nd ‘𝑐)〉), 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
530 | 501, 529 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒)))) = 0 ) |
531 | 530 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) = (((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 )) |
532 | 118 | unssad 4101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → 𝑏 ⊆ (𝑁 × 𝑁)) |
533 | 532 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → 𝑏 ⊆ (𝑁 × 𝑁)) |
534 | | simpr3 1198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
535 | | ssel2 3895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) → 𝑤 ∈ (𝑁 × 𝑁)) |
536 | 535 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → 𝑤 ∈ (𝑁 × 𝑁)) |
537 | | elequ1 2117 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑒 = 𝑤 → (𝑒 ∈ 𝑑 ↔ 𝑤 ∈ 𝑑)) |
538 | 537 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑒 = 𝑤 → if(𝑒 ∈ 𝑑, 1 , 0 ) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
539 | 486, 538,
488 | ifbieq12d 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑒 = 𝑤 → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤))) |
540 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) |
541 | 165, 162 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ if(𝑤 ∈ 𝑑, 1 , 0 ) ∈
V |
542 | 541, 492 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤)) ∈ V |
543 | 539, 540,
542 | fvmpt 6818 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑤 ∈ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤))) |
544 | 536, 543 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤))) |
545 | | ifeq2 4444 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 ))) |
546 | 545 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 ))) |
547 | | ifid 4479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), if(𝑤 ∈ 𝑑, 1 , 0 )) = if(𝑤 ∈ 𝑑, 1 , 0 ) |
548 | 546, 547 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → if(𝑤 = 𝑐, if(𝑤 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑤)) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
549 | 544, 548 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) ∧ (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
550 | 549 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑏 ⊆ (𝑁 × 𝑁) ∧ 𝑤 ∈ 𝑏) → ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
551 | 550 | ralimdva 3100 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 ⊆ (𝑁 × 𝑁) → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → ∀𝑤 ∈ 𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
552 | 533, 534,
551 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ 𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
553 | 142, 291 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑒 = 𝑐 → if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
554 | 165, 162 | ifex 4489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ if(𝑐 ∈ 𝑑, 1 , 0 ) ∈
V |
555 | 553, 540,
554 | fvmpt 6818 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 ∈ (𝑁 × 𝑁) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
556 | 122, 555 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
557 | 556 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
558 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = 𝑐 → ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐)) |
559 | | elequ1 2117 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑤 = 𝑐 → (𝑤 ∈ 𝑑 ↔ 𝑐 ∈ 𝑑)) |
560 | 559 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑤 = 𝑐 → if(𝑤 ∈ 𝑑, 1 , 0 ) = if(𝑐 ∈ 𝑑, 1 , 0 )) |
561 | 558, 560 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑤 = 𝑐 → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 ))) |
562 | 561 | ralunsn 4805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈ V → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ (∀𝑤 ∈ 𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 )))) |
563 | 562 | elv 3414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑤 ∈
(𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ (∀𝑤 ∈ 𝑏 ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ∧ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑐) = if(𝑐 ∈ 𝑑, 1 , 0 ))) |
564 | 552, 557,
563 | sylanbrc 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
565 | 223 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵) |
566 | | fveq1 6716 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (𝑦‘𝑤) = ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤)) |
567 | 566 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
568 | 567 | ralbidv 3118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
569 | | fveqeq2 6726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((𝐷‘𝑦) = 0 ↔ (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
570 | 568, 569 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 = (𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 ))) |
571 | | elequ2 2125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = 𝑑 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝑑)) |
572 | 571 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑑 → if(𝑤 ∈ 𝑧, 1 , 0 ) = if(𝑤 ∈ 𝑑, 1 , 0 )) |
573 | 572 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = 𝑑 → (((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
574 | 573 | ralbidv 3118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑑 → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
575 | 574 | imbi1d 345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 𝑑 → ((∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 ) ↔ (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 ))) |
576 | 570, 575 | rspc2va 3548 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))) ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ (𝑏 ∪ {𝑐})(𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
577 | 565, 503,
517, 576 | syl21anc 838 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (∀𝑤 ∈ (𝑏 ∪ {𝑐})((𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 )) |
578 | 564, 577 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒)))) = 0 ) |
579 | 531, 578 | oveq12d 7231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) + 0 )) |
580 | 308 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) + 0 ) = ( 0 + 0 )) |
581 | 12, 50, 48 | grplid 18397 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐾) → ( 0 + 0 ) = 0 ) |
582 | 115, 133,
581 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
583 | 580, 582 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) + 0 ) = 0 ) |
584 | 583 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · 0 ) + 0 ) = 0 ) |
585 | 579, 584 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ 𝑎 ∈ 𝐵) ∧ ((𝑏 ∪ {𝑐}) ∈ 𝑌 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = 0 ) |
586 | 104, 105,
106, 392, 393, 394, 585 | syl33anc 1387 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → ((((𝑎‘𝑐)(-g‘𝑅)if(𝑐 ∈ 𝑑, 1 , 0 )) · (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if((1st ‘𝑒) = (1st ‘𝑐), if(𝑒 = 𝑐, 1 , 0 ), (𝑎‘𝑒))))) + (𝐷‘(𝑒 ∈ (𝑁 × 𝑁) ↦ if(𝑒 = 𝑐, if(𝑒 ∈ 𝑑, 1 , 0 ), (𝑎‘𝑒))))) = 0 ) |
587 | 288, 391,
586 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ ((𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) → (𝐷‘𝑎) = 0 ) |
588 | 587 | expr 460 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) ∧ (𝑎 ∈ 𝐵 ∧ 𝑑 ∈ (𝑁 ↑m 𝑁))) → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑎) = 0 )) |
589 | 588 | ralrimivva 3112 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) → ∀𝑎 ∈ 𝐵 ∀𝑑 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑎) = 0 )) |
590 | | fveq1 6716 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑦 → (𝑎‘𝑤) = (𝑦‘𝑤)) |
591 | 590 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑦 → ((𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
592 | 591 | ralbidv 3118 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑦 → (∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ))) |
593 | | fveqeq2 6726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑦 → ((𝐷‘𝑎) = 0 ↔ (𝐷‘𝑦) = 0 )) |
594 | 592, 593 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑦 → ((∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑎) = 0 ) ↔ (∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
595 | | elequ2 2125 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑 = 𝑧 → (𝑤 ∈ 𝑑 ↔ 𝑤 ∈ 𝑧)) |
596 | 595 | ifbid 4462 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 = 𝑧 → if(𝑤 ∈ 𝑑, 1 , 0 ) = if(𝑤 ∈ 𝑧, 1 , 0 )) |
597 | 596 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = 𝑧 → ((𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
598 | 597 | ralbidv 3118 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 = 𝑧 → (∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) ↔ ∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
599 | 598 | imbi1d 345 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 = 𝑧 → ((∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
600 | 594, 599 | cbvral2vw 3371 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑎 ∈
𝐵 ∀𝑑 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑏 (𝑎‘𝑤) = if(𝑤 ∈ 𝑑, 1 , 0 ) → (𝐷‘𝑎) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
601 | 589, 600 | sylib 221 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
602 | | vex 3412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑏 ∈ V |
603 | | raleq 3319 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑏 → (∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
604 | 603 | imbi1d 345 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑏 → ((∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
605 | 604 | 2ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑏 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
606 | 602, 605,
72 | elab2 3591 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ 𝑌 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑏 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
607 | 601, 606 | sylibr 237 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ (𝑏 ∪ {𝑐}) ∈ 𝑌) → 𝑏 ∈ 𝑌) |
608 | 607 | 3expia 1123 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) → ((𝑏 ∪ {𝑐}) ∈ 𝑌 → 𝑏 ∈ 𝑌)) |
609 | 608 | con3d 155 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁)) → (¬ 𝑏 ∈ 𝑌 → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)) |
610 | 609 | 3adant3 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (¬ 𝑏 ∈ 𝑌 → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌)) |
611 | 610 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → (¬ 𝑏 ∈ 𝑌 → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))) |
612 | 611 | a2d 29 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))) |
613 | 103, 612 | syl5 34 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (((𝜑 ∧ 𝑏 ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ 𝑏 ∈ 𝑌) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑏 ∪ {𝑐}) ∈ 𝑌))) |
614 | 82, 87, 92, 97, 98, 613 | findcard2s 8843 |
. . . . . . . . . . 11
⊢ ((𝑁 × 𝑁) ∈ Fin → ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑁 × 𝑁) ∈ 𝑌)) |
615 | 77, 614 | mpcom 38 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) ∧ ¬ ∅ ∈ 𝑌) → ¬ (𝑁 × 𝑁) ∈ 𝑌) |
616 | 615 | 3exp 1121 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 × 𝑁) ⊆ (𝑁 × 𝑁) → (¬ ∅ ∈ 𝑌 → ¬ (𝑁 × 𝑁) ∈ 𝑌))) |
617 | 76, 616 | mpi 20 |
. . . . . . . 8
⊢ (𝜑 → (¬ ∅ ∈
𝑌 → ¬ (𝑁 × 𝑁) ∈ 𝑌)) |
618 | 75, 617 | mt4d 117 |
. . . . . . 7
⊢ (𝜑 → ∅ ∈ 𝑌) |
619 | 618 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ∅ ∈ 𝑌) |
620 | | 0ex 5200 |
. . . . . . 7
⊢ ∅
∈ V |
621 | | raleq 3319 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
622 | 621 | imbi1d 345 |
. . . . . . . 8
⊢ (𝑥 = ∅ →
((∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
623 | 622 | 2ralbidv 3120 |
. . . . . . 7
⊢ (𝑥 = ∅ → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ 𝑥 (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ))) |
624 | 620, 623,
72 | elab2 3591 |
. . . . . 6
⊢ (∅
∈ 𝑌 ↔
∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
625 | 619, 624 | sylib 221 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) |
626 | | fveq1 6716 |
. . . . . . . . 9
⊢ (𝑦 = 𝑎 → (𝑦‘𝑤) = (𝑎‘𝑤)) |
627 | 626 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑦 = 𝑎 → ((𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
628 | 627 | ralbidv 3118 |
. . . . . . 7
⊢ (𝑦 = 𝑎 → (∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ))) |
629 | | fveqeq2 6726 |
. . . . . . 7
⊢ (𝑦 = 𝑎 → ((𝐷‘𝑦) = 0 ↔ (𝐷‘𝑎) = 0 )) |
630 | 628, 629 | imbi12d 348 |
. . . . . 6
⊢ (𝑦 = 𝑎 → ((∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 ) ↔ (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑎) = 0 ))) |
631 | | eleq2 2826 |
. . . . . . . . . 10
⊢ (𝑧 = ( I ↾ 𝑁) → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ ( I ↾ 𝑁))) |
632 | 631 | ifbid 4462 |
. . . . . . . . 9
⊢ (𝑧 = ( I ↾ 𝑁) → if(𝑤 ∈ 𝑧, 1 , 0 ) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 )) |
633 | 632 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑧 = ( I ↾ 𝑁) → ((𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ))) |
634 | 633 | ralbidv 3118 |
. . . . . . 7
⊢ (𝑧 = ( I ↾ 𝑁) → (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) ↔ ∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ))) |
635 | 634 | imbi1d 345 |
. . . . . 6
⊢ (𝑧 = ( I ↾ 𝑁) → ((∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑎) = 0 ) ↔ (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) → (𝐷‘𝑎) = 0 ))) |
636 | 630, 635 | rspc2va 3548 |
. . . . 5
⊢ (((𝑎 ∈ 𝐵 ∧ ( I ↾ 𝑁) ∈ (𝑁 ↑m 𝑁)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑁 ↑m 𝑁)(∀𝑤 ∈ ∅ (𝑦‘𝑤) = if(𝑤 ∈ 𝑧, 1 , 0 ) → (𝐷‘𝑦) = 0 )) → (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) → (𝐷‘𝑎) = 0 )) |
637 | 2, 9, 625, 636 | syl21anc 838 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∀𝑤 ∈ ∅ (𝑎‘𝑤) = if(𝑤 ∈ ( I ↾ 𝑁), 1 , 0 ) → (𝐷‘𝑎) = 0 )) |
638 | 1, 637 | mpi 20 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐷‘𝑎) = 0 ) |
639 | 638 | mpteq2dva 5150 |
. 2
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↦ (𝐷‘𝑎)) = (𝑎 ∈ 𝐵 ↦ 0 )) |
640 | 53 | feqmptd 6780 |
. 2
⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝐵 ↦ (𝐷‘𝑎))) |
641 | | fconstmpt 5611 |
. . 3
⊢ (𝐵 × { 0 }) = (𝑎 ∈ 𝐵 ↦ 0 ) |
642 | 641 | a1i 11 |
. 2
⊢ (𝜑 → (𝐵 × { 0 }) = (𝑎 ∈ 𝐵 ↦ 0 )) |
643 | 639, 640,
642 | 3eqtr4d 2787 |
1
⊢ (𝜑 → 𝐷 = (𝐵 × { 0 })) |