MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmat Structured version   Visualization version   GIF version

Theorem chpdmat 22736
Description: The characteristic polynomial of a diagonal matrix. (Contributed by AV, 18-Aug-2019.) (Proof shortened by AV, 21-Nov-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐢 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1β€˜π‘…)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algScβ€˜π‘ƒ)
chpdmat.b 𝐡 = (Baseβ€˜π΄)
chpdmat.x 𝑋 = (var1β€˜π‘…)
chpdmat.0 0 = (0gβ€˜π‘…)
chpdmat.g 𝐺 = (mulGrpβ€˜π‘ƒ)
chpdmat.m βˆ’ = (-gβ€˜π‘ƒ)
Assertion
Ref Expression
chpdmat (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 )) β†’ (πΆβ€˜π‘€) = (𝐺 Ξ£g (π‘˜ ∈ 𝑁 ↦ (𝑋 βˆ’ (π‘†β€˜(π‘˜π‘€π‘˜))))))
Distinct variable groups:   𝐡,𝑖,𝑗,π‘˜   π‘˜,𝐺   𝑖,𝑀,𝑗,π‘˜   𝑖,𝑁,𝑗,π‘˜   𝑃,𝑖,𝑗,π‘˜   𝑅,𝑖,𝑗,π‘˜   𝑖,𝑋,𝑗,π‘˜   0 ,π‘˜
Allowed substitution hints:   𝐴(𝑖,𝑗,π‘˜)   𝐢(𝑖,𝑗,π‘˜)   𝑆(𝑖,𝑗,π‘˜)   𝐺(𝑖,𝑗)   βˆ’ (𝑖,𝑗,π‘˜)   0 (𝑖,𝑗)

Proof of Theorem chpdmat
StepHypRef Expression
1 chpdmat.c . . . 4 𝐢 = (𝑁 CharPlyMat 𝑅)
2 chpdmat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 chpdmat.b . . . 4 𝐡 = (Baseβ€˜π΄)
4 chpdmat.p . . . 4 𝑃 = (Poly1β€˜π‘…)
5 eqid 2728 . . . 4 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
6 eqid 2728 . . . 4 (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃)
7 eqid 2728 . . . 4 (-gβ€˜(𝑁 Mat 𝑃)) = (-gβ€˜(𝑁 Mat 𝑃))
8 chpdmat.x . . . 4 𝑋 = (var1β€˜π‘…)
9 eqid 2728 . . . 4 ( ·𝑠 β€˜(𝑁 Mat 𝑃)) = ( ·𝑠 β€˜(𝑁 Mat 𝑃))
10 eqid 2728 . . . 4 (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅)
11 eqid 2728 . . . 4 (1rβ€˜(𝑁 Mat 𝑃)) = (1rβ€˜(𝑁 Mat 𝑃))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chpmatval 22726 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (πΆβ€˜π‘€) = ((𝑁 maDet 𝑃)β€˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))))
1312adantr 480 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 )) β†’ (πΆβ€˜π‘€) = ((𝑁 maDet 𝑃)β€˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))))
144ply1crng 22110 . . . . . 6 (𝑅 ∈ CRing β†’ 𝑃 ∈ CRing)
15143ad2ant2 1132 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑃 ∈ CRing)
16 simp1 1134 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑁 ∈ Fin)
17 crngring 20178 . . . . . . 7 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
18173anim2i 1151 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡))
19 chpdmat.s . . . . . . 7 𝑆 = (algScβ€˜π‘ƒ)
20 chpdmat.0 . . . . . . 7 0 = (0gβ€˜π‘…)
21 chpdmat.g . . . . . . 7 𝐺 = (mulGrpβ€˜π‘ƒ)
22 chpdmat.m . . . . . . 7 βˆ’ = (-gβ€˜π‘ƒ)
231, 4, 2, 19, 3, 8, 20, 21, 22, 5, 11, 9, 7, 10chpdmatlem1 22733 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) β†’ ((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€)) ∈ (Baseβ€˜(𝑁 Mat 𝑃)))
2418, 23syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€)) ∈ (Baseβ€˜(𝑁 Mat 𝑃)))
2515, 16, 243jca 1126 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (𝑃 ∈ CRing ∧ 𝑁 ∈ Fin ∧ ((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€)) ∈ (Baseβ€˜(𝑁 Mat 𝑃))))
2625adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 )) β†’ (𝑃 ∈ CRing ∧ 𝑁 ∈ Fin ∧ ((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€)) ∈ (Baseβ€˜(𝑁 Mat 𝑃))))
2718anim1i 614 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑖 ∈ 𝑁) β†’ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) ∧ 𝑖 ∈ 𝑁))
2827anim1i 614 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) β†’ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁))
291, 4, 2, 19, 3, 8, 20, 21, 22, 5, 11, 9, 7, 10chpdmatlem2 22734 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 β‰  𝑗) ∧ (𝑖𝑀𝑗) = 0 ) β†’ (𝑖((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))𝑗) = (0gβ€˜π‘ƒ))
3028, 29sylanl1 679 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 β‰  𝑗) ∧ (𝑖𝑀𝑗) = 0 ) β†’ (𝑖((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))𝑗) = (0gβ€˜π‘ƒ))
3130exp31 419 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) β†’ (𝑖 β‰  𝑗 β†’ ((𝑖𝑀𝑗) = 0 β†’ (𝑖((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))𝑗) = (0gβ€˜π‘ƒ))))
3231a2d 29 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) β†’ ((𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 ) β†’ (𝑖 β‰  𝑗 β†’ (𝑖((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))𝑗) = (0gβ€˜π‘ƒ))))
3332ralimdva 3163 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ 𝑖 ∈ 𝑁) β†’ (βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 ) β†’ βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))𝑗) = (0gβ€˜π‘ƒ))))
3433ralimdva 3163 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 ) β†’ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))𝑗) = (0gβ€˜π‘ƒ))))
3534imp 406 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 )) β†’ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))𝑗) = (0gβ€˜π‘ƒ)))
36 eqid 2728 . . . 4 (Baseβ€˜(𝑁 Mat 𝑃)) = (Baseβ€˜(𝑁 Mat 𝑃))
37 eqid 2728 . . . 4 (0gβ€˜π‘ƒ) = (0gβ€˜π‘ƒ)
386, 5, 36, 21, 37mdetdiag 22494 . . 3 ((𝑃 ∈ CRing ∧ 𝑁 ∈ Fin ∧ ((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€)) ∈ (Baseβ€˜(𝑁 Mat 𝑃))) β†’ (βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))𝑗) = (0gβ€˜π‘ƒ)) β†’ ((𝑁 maDet 𝑃)β€˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))) = (𝐺 Ξ£g (π‘˜ ∈ 𝑁 ↦ (π‘˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))π‘˜)))))
3926, 35, 38sylc 65 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 )) β†’ ((𝑁 maDet 𝑃)β€˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))) = (𝐺 Ξ£g (π‘˜ ∈ 𝑁 ↦ (π‘˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))π‘˜))))
401, 4, 2, 19, 3, 8, 20, 21, 22, 5, 11, 9, 7, 10chpdmatlem3 22735 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐡) ∧ π‘˜ ∈ 𝑁) β†’ (π‘˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))π‘˜) = (𝑋 βˆ’ (π‘†β€˜(π‘˜π‘€π‘˜))))
4118, 40sylan 579 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ π‘˜ ∈ 𝑁) β†’ (π‘˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))π‘˜) = (𝑋 βˆ’ (π‘†β€˜(π‘˜π‘€π‘˜))))
4241adantlr 714 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 )) ∧ π‘˜ ∈ 𝑁) β†’ (π‘˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))π‘˜) = (𝑋 βˆ’ (π‘†β€˜(π‘˜π‘€π‘˜))))
4342mpteq2dva 5242 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 )) β†’ (π‘˜ ∈ 𝑁 ↦ (π‘˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))π‘˜)) = (π‘˜ ∈ 𝑁 ↦ (𝑋 βˆ’ (π‘†β€˜(π‘˜π‘€π‘˜)))))
4443oveq2d 7430 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 )) β†’ (𝐺 Ξ£g (π‘˜ ∈ 𝑁 ↦ (π‘˜((𝑋( ·𝑠 β€˜(𝑁 Mat 𝑃))(1rβ€˜(𝑁 Mat 𝑃)))(-gβ€˜(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)β€˜π‘€))π‘˜))) = (𝐺 Ξ£g (π‘˜ ∈ 𝑁 ↦ (𝑋 βˆ’ (π‘†β€˜(π‘˜π‘€π‘˜))))))
4513, 39, 443eqtrd 2772 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 (𝑖 β‰  𝑗 β†’ (𝑖𝑀𝑗) = 0 )) β†’ (πΆβ€˜π‘€) = (𝐺 Ξ£g (π‘˜ ∈ 𝑁 ↦ (𝑋 βˆ’ (π‘†β€˜(π‘˜π‘€π‘˜))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2936  βˆ€wral 3057   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414  Fincfn 8957  Basecbs 17173   ·𝑠 cvsca 17230  0gc0g 17414   Ξ£g cgsu 17415  -gcsg 18885  mulGrpcmgp 20067  1rcur 20114  Ringcrg 20166  CRingccrg 20167  algSccascl 21779  var1cv1 22088  Poly1cpl1 22089   Mat cmat 22300   maDet cmdat 22479   matToPolyMat cmat2pmat 22599   CharPlyMat cchpmat 22721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-addf 11211  ax-mulf 11212
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-xnn0 12569  df-z 12583  df-dec 12702  df-uz 12847  df-rp 13001  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-word 14491  df-lsw 14539  df-concat 14547  df-s1 14572  df-substr 14617  df-pfx 14647  df-splice 14726  df-reverse 14735  df-s2 14825  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17416  df-gsum 17417  df-prds 17422  df-pws 17424  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-submnd 18734  df-efmnd 18814  df-grp 18886  df-minusg 18887  df-sbg 18888  df-mulg 19017  df-subg 19071  df-ghm 19161  df-gim 19206  df-cntz 19261  df-oppg 19290  df-symg 19315  df-pmtr 19390  df-psgn 19439  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-cring 20169  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-rhm 20404  df-subrng 20476  df-subrg 20501  df-drng 20619  df-lmod 20738  df-lss 20809  df-sra 21051  df-rgmod 21052  df-cnfld 21273  df-zring 21366  df-zrh 21422  df-dsmm 21659  df-frlm 21674  df-ascl 21782  df-psr 21835  df-mvr 21836  df-mpl 21837  df-opsr 21839  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-mamu 22279  df-mat 22301  df-mdet 22480  df-mat2pmat 22602  df-chpmat 22722
This theorem is referenced by:  chpscmat  22737  chp0mat  22741  chpidmat  22742
  Copyright terms: Public domain W3C validator