Proof of Theorem chpdmat
Step | Hyp | Ref
| Expression |
1 | | chpdmat.c |
. . . 4
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
2 | | chpdmat.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | chpdmat.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
4 | | chpdmat.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
5 | | eqid 2738 |
. . . 4
⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) |
6 | | eqid 2738 |
. . . 4
⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) |
7 | | eqid 2738 |
. . . 4
⊢
(-g‘(𝑁 Mat 𝑃)) = (-g‘(𝑁 Mat 𝑃)) |
8 | | chpdmat.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
9 | | eqid 2738 |
. . . 4
⊢ (
·𝑠 ‘(𝑁 Mat 𝑃)) = ( ·𝑠
‘(𝑁 Mat 𝑃)) |
10 | | eqid 2738 |
. . . 4
⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) |
11 | | eqid 2738 |
. . . 4
⊢
(1r‘(𝑁 Mat 𝑃)) = (1r‘(𝑁 Mat 𝑃)) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | chpmatval 21888 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)))) |
13 | 12 | adantr 480 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)))) |
14 | 4 | ply1crng 21279 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
15 | 14 | 3ad2ant2 1132 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ CRing) |
16 | | simp1 1134 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
17 | | crngring 19710 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
18 | 17 | 3anim2i 1151 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵)) |
19 | | chpdmat.s |
. . . . . . 7
⊢ 𝑆 = (algSc‘𝑃) |
20 | | chpdmat.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
21 | | chpdmat.g |
. . . . . . 7
⊢ 𝐺 = (mulGrp‘𝑃) |
22 | | chpdmat.m |
. . . . . . 7
⊢ − =
(-g‘𝑃) |
23 | 1, 4, 2, 19, 3, 8,
20, 21, 22, 5, 11, 9, 7,
10 | chpdmatlem1 21895 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
24 | 18, 23 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
25 | 15, 16, 24 | 3jca 1126 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑃 ∈ CRing ∧ 𝑁 ∈ Fin ∧ ((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)))) |
26 | 25 | adantr 480 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑃 ∈ CRing ∧ 𝑁 ∈ Fin ∧ ((𝑋(
·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)))) |
27 | 18 | anim1i 614 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁)) |
28 | 27 | anim1i 614 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁)) |
29 | 1, 4, 2, 19, 3, 8,
20, 21, 22, 5, 11, 9, 7,
10 | chpdmatlem2 21896 |
. . . . . . . . 9
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g‘𝑃)) |
30 | 28, 29 | sylanl1 676 |
. . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑖 ≠ 𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g‘𝑃)) |
31 | 30 | exp31 419 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖 ≠ 𝑗 → ((𝑖𝑀𝑗) = 0 → (𝑖((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g‘𝑃)))) |
32 | 31 | a2d 29 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) → (𝑖 ≠ 𝑗 → (𝑖((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g‘𝑃)))) |
33 | 32 | ralimdva 3102 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁) → (∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) → ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g‘𝑃)))) |
34 | 33 | ralimdva 3102 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g‘𝑃)))) |
35 | 34 | imp 406 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g‘𝑃))) |
36 | | eqid 2738 |
. . . 4
⊢
(Base‘(𝑁 Mat
𝑃)) = (Base‘(𝑁 Mat 𝑃)) |
37 | | eqid 2738 |
. . . 4
⊢
(0g‘𝑃) = (0g‘𝑃) |
38 | 6, 5, 36, 21, 37 | mdetdiag 21656 |
. . 3
⊢ ((𝑃 ∈ CRing ∧ 𝑁 ∈ Fin ∧ ((𝑋(
·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g‘𝑃)) → ((𝑁 maDet 𝑃)‘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘))))) |
39 | 26, 35, 38 | sylc 65 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → ((𝑁 maDet 𝑃)‘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘)))) |
40 | 1, 4, 2, 19, 3, 8,
20, 21, 22, 5, 11, 9, 7,
10 | chpdmatlem3 21897 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ 𝑁) → (𝑘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘) = (𝑋 − (𝑆‘(𝑘𝑀𝑘)))) |
41 | 18, 40 | sylan 579 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ 𝑁) → (𝑘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘) = (𝑋 − (𝑆‘(𝑘𝑀𝑘)))) |
42 | 41 | adantlr 711 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘 ∈ 𝑁) → (𝑘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘) = (𝑋 − (𝑆‘(𝑘𝑀𝑘)))) |
43 | 42 | mpteq2dva 5170 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑘 ∈ 𝑁 ↦ (𝑘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘)) = (𝑘 ∈ 𝑁 ↦ (𝑋 − (𝑆‘(𝑘𝑀𝑘))))) |
44 | 43 | oveq2d 7271 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑘((𝑋( ·𝑠
‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋 − (𝑆‘(𝑘𝑀𝑘)))))) |
45 | 13, 39, 44 | 3eqtrd 2782 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐶‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋 − (𝑆‘(𝑘𝑀𝑘)))))) |