MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpdmat Structured version   Visualization version   GIF version

Theorem chpdmat 22096
Description: The characteristic polynomial of a diagonal matrix. (Contributed by AV, 18-Aug-2019.) (Proof shortened by AV, 21-Nov-2019.)
Hypotheses
Ref Expression
chpdmat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpdmat.p 𝑃 = (Poly1𝑅)
chpdmat.a 𝐴 = (𝑁 Mat 𝑅)
chpdmat.s 𝑆 = (algSc‘𝑃)
chpdmat.b 𝐵 = (Base‘𝐴)
chpdmat.x 𝑋 = (var1𝑅)
chpdmat.0 0 = (0g𝑅)
chpdmat.g 𝐺 = (mulGrp‘𝑃)
chpdmat.m = (-g𝑃)
Assertion
Ref Expression
chpdmat (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘   𝑘,𝐺   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝑃,𝑖,𝑗,𝑘   𝑅,𝑖,𝑗,𝑘   𝑖,𝑋,𝑗,𝑘   0 ,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘)   𝐶(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑗,𝑘)   𝐺(𝑖,𝑗)   (𝑖,𝑗,𝑘)   0 (𝑖,𝑗)

Proof of Theorem chpdmat
StepHypRef Expression
1 chpdmat.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
2 chpdmat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 chpdmat.b . . . 4 𝐵 = (Base‘𝐴)
4 chpdmat.p . . . 4 𝑃 = (Poly1𝑅)
5 eqid 2736 . . . 4 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
6 eqid 2736 . . . 4 (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃)
7 eqid 2736 . . . 4 (-g‘(𝑁 Mat 𝑃)) = (-g‘(𝑁 Mat 𝑃))
8 chpdmat.x . . . 4 𝑋 = (var1𝑅)
9 eqid 2736 . . . 4 ( ·𝑠 ‘(𝑁 Mat 𝑃)) = ( ·𝑠 ‘(𝑁 Mat 𝑃))
10 eqid 2736 . . . 4 (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅)
11 eqid 2736 . . . 4 (1r‘(𝑁 Mat 𝑃)) = (1r‘(𝑁 Mat 𝑃))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chpmatval 22086 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) = ((𝑁 maDet 𝑃)‘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))))
1312adantr 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐶𝑀) = ((𝑁 maDet 𝑃)‘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))))
144ply1crng 21475 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
15143ad2ant2 1133 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ CRing)
16 simp1 1135 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
17 crngring 19890 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
18173anim2i 1152 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵))
19 chpdmat.s . . . . . . 7 𝑆 = (algSc‘𝑃)
20 chpdmat.0 . . . . . . 7 0 = (0g𝑅)
21 chpdmat.g . . . . . . 7 𝐺 = (mulGrp‘𝑃)
22 chpdmat.m . . . . . . 7 = (-g𝑃)
231, 4, 2, 19, 3, 8, 20, 21, 22, 5, 11, 9, 7, 10chpdmatlem1 22093 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)))
2418, 23syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)))
2515, 16, 243jca 1127 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑃 ∈ CRing ∧ 𝑁 ∈ Fin ∧ ((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))))
2625adantr 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑃 ∈ CRing ∧ 𝑁 ∈ Fin ∧ ((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))))
2718anim1i 615 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖𝑁) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁))
2827anim1i 615 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁))
291, 4, 2, 19, 3, 8, 20, 21, 22, 5, 11, 9, 7, 10chpdmatlem2 22094 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g𝑃))
3028, 29sylanl1 677 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑖𝑗) ∧ (𝑖𝑀𝑗) = 0 ) → (𝑖((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g𝑃))
3130exp31 420 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → (𝑖𝑗 → ((𝑖𝑀𝑗) = 0 → (𝑖((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g𝑃))))
3231a2d 29 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → (𝑖𝑗 → (𝑖((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g𝑃))))
3332ralimdva 3160 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑖𝑁) → (∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → ∀𝑗𝑁 (𝑖𝑗 → (𝑖((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g𝑃))))
3433ralimdva 3160 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g𝑃))))
3534imp 407 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g𝑃)))
36 eqid 2736 . . . 4 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
37 eqid 2736 . . . 4 (0g𝑃) = (0g𝑃)
386, 5, 36, 21, 37mdetdiag 21854 . . 3 ((𝑃 ∈ CRing ∧ 𝑁 ∈ Fin ∧ ((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑗) = (0g𝑃)) → ((𝑁 maDet 𝑃)‘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘)))))
3926, 35, 38sylc 65 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ((𝑁 maDet 𝑃)‘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘))))
401, 4, 2, 19, 3, 8, 20, 21, 22, 5, 11, 9, 7, 10chpdmatlem3 22095 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘𝑁) → (𝑘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘) = (𝑋 (𝑆‘(𝑘𝑀𝑘))))
4118, 40sylan 580 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑘𝑁) → (𝑘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘) = (𝑋 (𝑆‘(𝑘𝑀𝑘))))
4241adantlr 712 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘𝑁) → (𝑘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘) = (𝑋 (𝑆‘(𝑘𝑀𝑘))))
4342mpteq2dva 5192 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑘𝑁 ↦ (𝑘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘)) = (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘)))))
4443oveq2d 7353 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐺 Σg (𝑘𝑁 ↦ (𝑘((𝑋( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))𝑘))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
4513, 39, 443eqtrd 2780 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐶𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋 (𝑆‘(𝑘𝑀𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  cmpt 5175  cfv 6479  (class class class)co 7337  Fincfn 8804  Basecbs 17009   ·𝑠 cvsca 17063  0gc0g 17247   Σg cgsu 17248  -gcsg 18675  mulGrpcmgp 19815  1rcur 19832  Ringcrg 19878  CRingccrg 19879  algSccascl 21165  var1cv1 21453  Poly1cpl1 21454   Mat cmat 21660   maDet cmdat 21839   matToPolyMat cmat2pmat 21959   CharPlyMat cchpmat 22081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-ofr 7596  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-tpos 8112  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-sup 9299  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-xnn0 12407  df-z 12421  df-dec 12539  df-uz 12684  df-rp 12832  df-fz 13341  df-fzo 13484  df-seq 13823  df-exp 13884  df-hash 14146  df-word 14318  df-lsw 14366  df-concat 14374  df-s1 14400  df-substr 14452  df-pfx 14482  df-splice 14561  df-reverse 14570  df-s2 14660  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-0g 17249  df-gsum 17250  df-prds 17255  df-pws 17257  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-submnd 18528  df-efmnd 18604  df-grp 18676  df-minusg 18677  df-sbg 18678  df-mulg 18797  df-subg 18848  df-ghm 18928  df-gim 18971  df-cntz 19019  df-oppg 19046  df-symg 19071  df-pmtr 19146  df-psgn 19195  df-cmn 19483  df-abl 19484  df-mgp 19816  df-ur 19833  df-ring 19880  df-cring 19881  df-oppr 19957  df-dvdsr 19978  df-unit 19979  df-invr 20009  df-dvr 20020  df-rnghom 20054  df-drng 20095  df-subrg 20127  df-lmod 20231  df-lss 20300  df-sra 20540  df-rgmod 20541  df-cnfld 20704  df-zring 20777  df-zrh 20811  df-dsmm 21045  df-frlm 21060  df-ascl 21168  df-psr 21218  df-mvr 21219  df-mpl 21220  df-opsr 21222  df-psr1 21457  df-vr1 21458  df-ply1 21459  df-mamu 21639  df-mat 21661  df-mdet 21840  df-mat2pmat 21962  df-chpmat 22082
This theorem is referenced by:  chpscmat  22097  chp0mat  22101  chpidmat  22102
  Copyright terms: Public domain W3C validator