| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincreslvec3 | Structured version Visualization version GIF version | ||
| Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) |
| lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) |
| lincresunit.0 | ⊢ 0 = (0g‘𝑅) |
| lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) |
| lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) |
| lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) |
| lincresunit.t | ⊢ · = (.r‘𝑅) |
| lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
| Ref | Expression |
|---|---|
| lincreslvec3 | ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21028 | . . . 4 ⊢ (𝑀 ∈ LVec → 𝑀 ∈ LMod) | |
| 2 | 1 | 3anim2i 1153 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆)) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆)) |
| 4 | simp21 1207 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 ∈ (𝐸 ↑m 𝑆)) | |
| 5 | elmapi 8783 | . . . . . 6 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) | |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) → 𝐹:𝑆⟶𝐸) |
| 7 | simp3 1138 | . . . . 5 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 8 | ffvelcdm 7019 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ 𝐸) | |
| 9 | 6, 7, 8 | syl2anr 597 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝐸) |
| 10 | simpr2 1196 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ≠ 0 ) | |
| 11 | lincresunit.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 12 | 11 | lvecdrng 21027 | . . . . . . 7 ⊢ (𝑀 ∈ LVec → 𝑅 ∈ DivRing) |
| 13 | 12 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ DivRing) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → 𝑅 ∈ DivRing) |
| 15 | lincresunit.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑅) | |
| 16 | lincresunit.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 17 | lincresunit.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 18 | 15, 16, 17 | drngunit 20637 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐹‘𝑋) ∈ 𝑈 ↔ ((𝐹‘𝑋) ∈ 𝐸 ∧ (𝐹‘𝑋) ≠ 0 ))) |
| 19 | 14, 18 | syl 17 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → ((𝐹‘𝑋) ∈ 𝑈 ↔ ((𝐹‘𝑋) ∈ 𝐸 ∧ (𝐹‘𝑋) ≠ 0 ))) |
| 20 | 9, 10, 19 | mpbir2and 713 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝑈) |
| 21 | 20 | 3adant3 1132 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹‘𝑋) ∈ 𝑈) |
| 22 | simp3 1138 | . . 3 ⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 ) | |
| 23 | 22 | 3ad2ant2 1134 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 finSupp 0 ) |
| 24 | simp3 1138 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹( linC ‘𝑀)𝑆) = 𝑍) | |
| 25 | lincresunit.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 26 | lincresunit.z | . . 3 ⊢ 𝑍 = (0g‘𝑀) | |
| 27 | lincresunit.n | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
| 28 | lincresunit.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
| 29 | lincresunit.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 30 | lincresunit.g | . . 3 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
| 31 | 25, 11, 15, 16, 17, 26, 27, 28, 29, 30 | lincresunit3 48470 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) |
| 32 | 3, 4, 21, 23, 24, 31 | syl131anc 1385 | 1 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 𝒫 cpw 4553 {csn 4579 class class class wbr 5095 ↦ cmpt 5176 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 finSupp cfsupp 9270 Basecbs 17138 .rcmulr 17180 Scalarcsca 17182 0gc0g 17361 invgcminusg 18831 Unitcui 20258 invrcinvr 20290 DivRingcdr 20632 LModclmod 20781 LVecclvec 21024 linC clinc 48393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-0g 17363 df-gsum 17364 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-mulg 18965 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-drng 20634 df-lmod 20783 df-lvec 21025 df-linc 48395 |
| This theorem is referenced by: isldepslvec2 48474 |
| Copyright terms: Public domain | W3C validator |