| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincreslvec3 | Structured version Visualization version GIF version | ||
| Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) |
| lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) |
| lincresunit.0 | ⊢ 0 = (0g‘𝑅) |
| lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) |
| lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) |
| lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) |
| lincresunit.t | ⊢ · = (.r‘𝑅) |
| lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
| Ref | Expression |
|---|---|
| lincreslvec3 | ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21049 | . . . 4 ⊢ (𝑀 ∈ LVec → 𝑀 ∈ LMod) | |
| 2 | 1 | 3anim2i 1153 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆)) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆)) |
| 4 | simp21 1207 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 ∈ (𝐸 ↑m 𝑆)) | |
| 5 | elmapi 8782 | . . . . . 6 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) | |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) → 𝐹:𝑆⟶𝐸) |
| 7 | simp3 1138 | . . . . 5 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 8 | ffvelcdm 7023 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ 𝐸) | |
| 9 | 6, 7, 8 | syl2anr 597 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝐸) |
| 10 | simpr2 1196 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ≠ 0 ) | |
| 11 | lincresunit.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 12 | 11 | lvecdrng 21048 | . . . . . . 7 ⊢ (𝑀 ∈ LVec → 𝑅 ∈ DivRing) |
| 13 | 12 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ DivRing) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → 𝑅 ∈ DivRing) |
| 15 | lincresunit.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑅) | |
| 16 | lincresunit.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 17 | lincresunit.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 18 | 15, 16, 17 | drngunit 20658 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐹‘𝑋) ∈ 𝑈 ↔ ((𝐹‘𝑋) ∈ 𝐸 ∧ (𝐹‘𝑋) ≠ 0 ))) |
| 19 | 14, 18 | syl 17 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → ((𝐹‘𝑋) ∈ 𝑈 ↔ ((𝐹‘𝑋) ∈ 𝐸 ∧ (𝐹‘𝑋) ≠ 0 ))) |
| 20 | 9, 10, 19 | mpbir2and 713 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝑈) |
| 21 | 20 | 3adant3 1132 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹‘𝑋) ∈ 𝑈) |
| 22 | simp3 1138 | . . 3 ⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 ) | |
| 23 | 22 | 3ad2ant2 1134 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 finSupp 0 ) |
| 24 | simp3 1138 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹( linC ‘𝑀)𝑆) = 𝑍) | |
| 25 | lincresunit.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 26 | lincresunit.z | . . 3 ⊢ 𝑍 = (0g‘𝑀) | |
| 27 | lincresunit.n | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
| 28 | lincresunit.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
| 29 | lincresunit.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 30 | lincresunit.g | . . 3 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
| 31 | 25, 11, 15, 16, 17, 26, 27, 28, 29, 30 | lincresunit3 48643 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) |
| 32 | 3, 4, 21, 23, 24, 31 | syl131anc 1385 | 1 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 𝒫 cpw 4551 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 finSupp cfsupp 9256 Basecbs 17127 .rcmulr 17169 Scalarcsca 17171 0gc0g 17350 invgcminusg 18855 Unitcui 20282 invrcinvr 20314 DivRingcdr 20653 LModclmod 20802 LVecclvec 21045 linC clinc 48566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-0g 17352 df-gsum 17353 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-mulg 18989 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-drng 20655 df-lmod 20804 df-lvec 21046 df-linc 48568 |
| This theorem is referenced by: isldepslvec2 48647 |
| Copyright terms: Public domain | W3C validator |