Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincreslvec3 Structured version   Visualization version   GIF version

Theorem lincreslvec3 42940
Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincreslvec3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠   𝐺,𝑠   𝑅,𝑠   𝑍,𝑠

Proof of Theorem lincreslvec3
StepHypRef Expression
1 lveclmod 19378 . . . 4 (𝑀 ∈ LVec → 𝑀 ∈ LMod)
213anim2i 1192 . . 3 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
323ad2ant1 1163 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
4 simp21 1263 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 ∈ (𝐸𝑚 𝑆))
5 elmapi 8082 . . . . . 6 (𝐹 ∈ (𝐸𝑚 𝑆) → 𝐹:𝑆𝐸)
653ad2ant1 1163 . . . . 5 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) → 𝐹:𝑆𝐸)
7 simp3 1168 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) → 𝑋𝑆)
8 ffvelrn 6547 . . . . 5 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
96, 7, 8syl2anr 590 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝐸)
10 simpr2 1250 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → (𝐹𝑋) ≠ 0 )
11 lincresunit.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
1211lvecdrng 19377 . . . . . . 7 (𝑀 ∈ LVec → 𝑅 ∈ DivRing)
13123ad2ant2 1164 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) → 𝑅 ∈ DivRing)
1413adantr 472 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → 𝑅 ∈ DivRing)
15 lincresunit.e . . . . . 6 𝐸 = (Base‘𝑅)
16 lincresunit.u . . . . . 6 𝑈 = (Unit‘𝑅)
17 lincresunit.0 . . . . . 6 0 = (0g𝑅)
1815, 16, 17drngunit 19021 . . . . 5 (𝑅 ∈ DivRing → ((𝐹𝑋) ∈ 𝑈 ↔ ((𝐹𝑋) ∈ 𝐸 ∧ (𝐹𝑋) ≠ 0 )))
1914, 18syl 17 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → ((𝐹𝑋) ∈ 𝑈 ↔ ((𝐹𝑋) ∈ 𝐸 ∧ (𝐹𝑋) ≠ 0 )))
209, 10, 19mpbir2and 704 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑈)
21203adant3 1162 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹𝑋) ∈ 𝑈)
22 simp3 1168 . . 3 ((𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) → 𝐹 finSupp 0 )
23223ad2ant2 1164 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 finSupp 0 )
24 simp3 1168 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹( linC ‘𝑀)𝑆) = 𝑍)
25 lincresunit.b . . 3 𝐵 = (Base‘𝑀)
26 lincresunit.z . . 3 𝑍 = (0g𝑀)
27 lincresunit.n . . 3 𝑁 = (invg𝑅)
28 lincresunit.i . . 3 𝐼 = (invr𝑅)
29 lincresunit.t . . 3 · = (.r𝑅)
30 lincresunit.g . . 3 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
3125, 11, 15, 16, 17, 26, 27, 28, 29, 30lincresunit3 42939 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
323, 4, 21, 23, 24, 31syl131anc 1502 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸𝑚 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  cdif 3729  𝒫 cpw 4315  {csn 4334   class class class wbr 4809  cmpt 4888  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060   finSupp cfsupp 8482  Basecbs 16130  .rcmulr 16215  Scalarcsca 16217  0gc0g 16366  invgcminusg 17690  Unitcui 18906  invrcinvr 18938  DivRingcdr 19016  LModclmod 19132  LVecclvec 19374   linC clinc 42862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-0g 16368  df-gsum 16369  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-mhm 17601  df-submnd 17602  df-grp 17692  df-minusg 17693  df-mulg 17808  df-ghm 17922  df-cntz 18013  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-drng 19018  df-lmod 19134  df-lvec 19375  df-linc 42864
This theorem is referenced by:  isldepslvec2  42943
  Copyright terms: Public domain W3C validator