|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincreslvec3 | Structured version Visualization version GIF version | ||
| Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) | 
| lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) | 
| lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) | 
| lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) | 
| lincresunit.0 | ⊢ 0 = (0g‘𝑅) | 
| lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) | 
| lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) | 
| lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) | 
| lincresunit.t | ⊢ · = (.r‘𝑅) | 
| lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | 
| Ref | Expression | 
|---|---|
| lincreslvec3 | ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lveclmod 21105 | . . . 4 ⊢ (𝑀 ∈ LVec → 𝑀 ∈ LMod) | |
| 2 | 1 | 3anim2i 1154 | . . 3 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆)) | 
| 3 | 2 | 3ad2ant1 1134 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆)) | 
| 4 | simp21 1207 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 ∈ (𝐸 ↑m 𝑆)) | |
| 5 | elmapi 8889 | . . . . . 6 ⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) | |
| 6 | 5 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) → 𝐹:𝑆⟶𝐸) | 
| 7 | simp3 1139 | . . . . 5 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 8 | ffvelcdm 7101 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ 𝐸) | |
| 9 | 6, 7, 8 | syl2anr 597 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝐸) | 
| 10 | simpr2 1196 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ≠ 0 ) | |
| 11 | lincresunit.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 12 | 11 | lvecdrng 21104 | . . . . . . 7 ⊢ (𝑀 ∈ LVec → 𝑅 ∈ DivRing) | 
| 13 | 12 | 3ad2ant2 1135 | . . . . . 6 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ DivRing) | 
| 14 | 13 | adantr 480 | . . . . 5 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → 𝑅 ∈ DivRing) | 
| 15 | lincresunit.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑅) | |
| 16 | lincresunit.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 17 | lincresunit.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 18 | 15, 16, 17 | drngunit 20734 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐹‘𝑋) ∈ 𝑈 ↔ ((𝐹‘𝑋) ∈ 𝐸 ∧ (𝐹‘𝑋) ≠ 0 ))) | 
| 19 | 14, 18 | syl 17 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → ((𝐹‘𝑋) ∈ 𝑈 ↔ ((𝐹‘𝑋) ∈ 𝐸 ∧ (𝐹‘𝑋) ≠ 0 ))) | 
| 20 | 9, 10, 19 | mpbir2and 713 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 )) → (𝐹‘𝑋) ∈ 𝑈) | 
| 21 | 20 | 3adant3 1133 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹‘𝑋) ∈ 𝑈) | 
| 22 | simp3 1139 | . . 3 ⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 ) | |
| 23 | 22 | 3ad2ant2 1135 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 finSupp 0 ) | 
| 24 | simp3 1139 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹( linC ‘𝑀)𝑆) = 𝑍) | |
| 25 | lincresunit.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 26 | lincresunit.z | . . 3 ⊢ 𝑍 = (0g‘𝑀) | |
| 27 | lincresunit.n | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
| 28 | lincresunit.i | . . 3 ⊢ 𝐼 = (invr‘𝑅) | |
| 29 | lincresunit.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 30 | lincresunit.g | . . 3 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
| 31 | 25, 11, 15, 16, 17, 26, 27, 28, 29, 30 | lincresunit3 48398 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | 
| 32 | 3, 4, 21, 23, 24, 31 | syl131anc 1385 | 1 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 𝒫 cpw 4600 {csn 4626 class class class wbr 5143 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 finSupp cfsupp 9401 Basecbs 17247 .rcmulr 17298 Scalarcsca 17300 0gc0g 17484 invgcminusg 18952 Unitcui 20355 invrcinvr 20387 DivRingcdr 20729 LModclmod 20858 LVecclvec 21101 linC clinc 48321 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-0g 17486 df-gsum 17487 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-mulg 19086 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-drng 20731 df-lmod 20860 df-lvec 21102 df-linc 48323 | 
| This theorem is referenced by: isldepslvec2 48402 | 
| Copyright terms: Public domain | W3C validator |