Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincreslvec3 Structured version   Visualization version   GIF version

Theorem lincreslvec3 44531
Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincreslvec3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   0 ,𝑠   𝐺,𝑠   𝑅,𝑠   𝑍,𝑠

Proof of Theorem lincreslvec3
StepHypRef Expression
1 lveclmod 19872 . . . 4 (𝑀 ∈ LVec → 𝑀 ∈ LMod)
213anim2i 1149 . . 3 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
323ad2ant1 1129 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆))
4 simp21 1202 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 ∈ (𝐸m 𝑆))
5 elmapi 8422 . . . . . 6 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
653ad2ant1 1129 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) → 𝐹:𝑆𝐸)
7 simp3 1134 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) → 𝑋𝑆)
8 ffvelrn 6843 . . . . 5 ((𝐹:𝑆𝐸𝑋𝑆) → (𝐹𝑋) ∈ 𝐸)
96, 7, 8syl2anr 598 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝐸)
10 simpr2 1191 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → (𝐹𝑋) ≠ 0 )
11 lincresunit.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
1211lvecdrng 19871 . . . . . . 7 (𝑀 ∈ LVec → 𝑅 ∈ DivRing)
13123ad2ant2 1130 . . . . . 6 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) → 𝑅 ∈ DivRing)
1413adantr 483 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → 𝑅 ∈ DivRing)
15 lincresunit.e . . . . . 6 𝐸 = (Base‘𝑅)
16 lincresunit.u . . . . . 6 𝑈 = (Unit‘𝑅)
17 lincresunit.0 . . . . . 6 0 = (0g𝑅)
1815, 16, 17drngunit 19501 . . . . 5 (𝑅 ∈ DivRing → ((𝐹𝑋) ∈ 𝑈 ↔ ((𝐹𝑋) ∈ 𝐸 ∧ (𝐹𝑋) ≠ 0 )))
1914, 18syl 17 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → ((𝐹𝑋) ∈ 𝑈 ↔ ((𝐹𝑋) ∈ 𝐸 ∧ (𝐹𝑋) ≠ 0 )))
209, 10, 19mpbir2and 711 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑈)
21203adant3 1128 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹𝑋) ∈ 𝑈)
22 simp3 1134 . . 3 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) → 𝐹 finSupp 0 )
23223ad2ant2 1130 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → 𝐹 finSupp 0 )
24 simp3 1134 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐹( linC ‘𝑀)𝑆) = 𝑍)
25 lincresunit.b . . 3 𝐵 = (Base‘𝑀)
26 lincresunit.z . . 3 𝑍 = (0g𝑀)
27 lincresunit.n . . 3 𝑁 = (invg𝑅)
28 lincresunit.i . . 3 𝐼 = (invr𝑅)
29 lincresunit.t . . 3 · = (.r𝑅)
30 lincresunit.g . . 3 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
3125, 11, 15, 16, 17, 26, 27, 28, 29, 30lincresunit3 44530 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
323, 4, 21, 23, 24, 31syl131anc 1379 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LVec ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ≠ 0𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  cdif 3932  𝒫 cpw 4538  {csn 4560   class class class wbr 5058  cmpt 5138  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400   finSupp cfsupp 8827  Basecbs 16477  .rcmulr 16560  Scalarcsca 16562  0gc0g 16707  invgcminusg 18098  Unitcui 19383  invrcinvr 19415  DivRingcdr 19496  LModclmod 19628  LVecclvec 19868   linC clinc 44453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-mulg 18219  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-drng 19498  df-lmod 19630  df-lvec 19869  df-linc 44455
This theorem is referenced by:  isldepslvec2  44534
  Copyright terms: Public domain W3C validator