Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgrprop2 | Structured version Visualization version GIF version |
Description: The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺, connecting vertices of the subgraph only. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
Ref | Expression |
---|---|
subgrprop2 | ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝑆) | |
2 | issubgr.a | . . 3 ⊢ 𝐴 = (Vtx‘𝐺) | |
3 | issubgr.i | . . 3 ⊢ 𝐼 = (iEdg‘𝑆) | |
4 | issubgr.b | . . 3 ⊢ 𝐵 = (iEdg‘𝐺) | |
5 | issubgr.e | . . 3 ⊢ 𝐸 = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | subgrprop 27543 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
7 | resss 5905 | . . . 4 ⊢ (𝐵 ↾ dom 𝐼) ⊆ 𝐵 | |
8 | sseq1 3942 | . . . 4 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼 ⊆ 𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵)) | |
9 | 7, 8 | mpbiri 257 | . . 3 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼 ⊆ 𝐵) |
10 | 9 | 3anim2i 1151 | . 2 ⊢ ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
11 | 6, 10 | syl 17 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ⊆ wss 3883 𝒫 cpw 4530 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 Edgcedg 27320 SubGraph csubgr 27537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-res 5592 df-iota 6376 df-fv 6426 df-subgr 27538 |
This theorem is referenced by: uhgrissubgr 27545 subgrprop3 27546 subgrfun 27551 subgreldmiedg 27553 subgruhgredgd 27554 subumgredg2 27555 subuhgr 27556 subupgr 27557 subumgr 27558 subusgr 27559 subgrwlk 32994 |
Copyright terms: Public domain | W3C validator |