![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgrprop2 | Structured version Visualization version GIF version |
Description: The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺, connecting vertices of the subgraph only. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
Ref | Expression |
---|---|
subgrprop2 | ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝑆) | |
2 | issubgr.a | . . 3 ⊢ 𝐴 = (Vtx‘𝐺) | |
3 | issubgr.i | . . 3 ⊢ 𝐼 = (iEdg‘𝑆) | |
4 | issubgr.b | . . 3 ⊢ 𝐵 = (iEdg‘𝐺) | |
5 | issubgr.e | . . 3 ⊢ 𝐸 = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | subgrprop 26748 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
7 | resss 5717 | . . . 4 ⊢ (𝐵 ↾ dom 𝐼) ⊆ 𝐵 | |
8 | sseq1 3878 | . . . 4 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼 ⊆ 𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵)) | |
9 | 7, 8 | mpbiri 250 | . . 3 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼 ⊆ 𝐵) |
10 | 9 | 3anim2i 1133 | . 2 ⊢ ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
11 | 6, 10 | syl 17 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ⊆ wss 3825 𝒫 cpw 4416 class class class wbr 4923 dom cdm 5400 ↾ cres 5402 ‘cfv 6182 Vtxcvtx 26474 iEdgciedg 26475 Edgcedg 26525 SubGraph csubgr 26742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-xp 5406 df-rel 5407 df-dm 5410 df-res 5412 df-iota 6146 df-fv 6190 df-subgr 26743 |
This theorem is referenced by: uhgrissubgr 26750 subgrprop3 26751 subgrfun 26756 subgreldmiedg 26758 subgruhgredgd 26759 subumgredg2 26760 subuhgr 26761 subupgr 26762 subumgr 26763 subusgr 26764 |
Copyright terms: Public domain | W3C validator |