| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrprop2 | Structured version Visualization version GIF version | ||
| Description: The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺, connecting vertices of the subgraph only. (Contributed by AV, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
| issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
| issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
| issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
| issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
| Ref | Expression |
|---|---|
| subgrprop2 | ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝑆) | |
| 2 | issubgr.a | . . 3 ⊢ 𝐴 = (Vtx‘𝐺) | |
| 3 | issubgr.i | . . 3 ⊢ 𝐼 = (iEdg‘𝑆) | |
| 4 | issubgr.b | . . 3 ⊢ 𝐵 = (iEdg‘𝐺) | |
| 5 | issubgr.e | . . 3 ⊢ 𝐸 = (Edg‘𝑆) | |
| 6 | 1, 2, 3, 4, 5 | subgrprop 29249 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
| 7 | resss 5950 | . . . 4 ⊢ (𝐵 ↾ dom 𝐼) ⊆ 𝐵 | |
| 8 | sseq1 3960 | . . . 4 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼 ⊆ 𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵)) | |
| 9 | 7, 8 | mpbiri 258 | . . 3 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼 ⊆ 𝐵) |
| 10 | 9 | 3anim2i 1153 | . 2 ⊢ ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
| 11 | 6, 10 | syl 17 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ⊆ wss 3902 𝒫 cpw 4550 class class class wbr 5091 dom cdm 5616 ↾ cres 5618 ‘cfv 6481 Vtxcvtx 28972 iEdgciedg 28973 Edgcedg 29023 SubGraph csubgr 29243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-dm 5626 df-res 5628 df-iota 6437 df-fv 6489 df-subgr 29244 |
| This theorem is referenced by: uhgrissubgr 29251 subgrprop3 29252 subgrfun 29257 subgreldmiedg 29259 subgruhgredgd 29260 subumgredg2 29261 subuhgr 29262 subupgr 29263 subumgr 29264 subusgr 29265 subgrwlk 35164 |
| Copyright terms: Public domain | W3C validator |