![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgrprop2 | Structured version Visualization version GIF version |
Description: The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺, connecting vertices of the subgraph only. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
Ref | Expression |
---|---|
subgrprop2 | ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝑆) | |
2 | issubgr.a | . . 3 ⊢ 𝐴 = (Vtx‘𝐺) | |
3 | issubgr.i | . . 3 ⊢ 𝐼 = (iEdg‘𝑆) | |
4 | issubgr.b | . . 3 ⊢ 𝐵 = (iEdg‘𝐺) | |
5 | issubgr.e | . . 3 ⊢ 𝐸 = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | subgrprop 28794 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
7 | resss 6007 | . . . 4 ⊢ (𝐵 ↾ dom 𝐼) ⊆ 𝐵 | |
8 | sseq1 4008 | . . . 4 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼 ⊆ 𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵)) | |
9 | 7, 8 | mpbiri 257 | . . 3 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼 ⊆ 𝐵) |
10 | 9 | 3anim2i 1152 | . 2 ⊢ ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
11 | 6, 10 | syl 17 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ⊆ wss 3949 𝒫 cpw 4603 class class class wbr 5149 dom cdm 5677 ↾ cres 5679 ‘cfv 6544 Vtxcvtx 28520 iEdgciedg 28521 Edgcedg 28571 SubGraph csubgr 28788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-dm 5687 df-res 5689 df-iota 6496 df-fv 6552 df-subgr 28789 |
This theorem is referenced by: uhgrissubgr 28796 subgrprop3 28797 subgrfun 28802 subgreldmiedg 28804 subgruhgredgd 28805 subumgredg2 28806 subuhgr 28807 subupgr 28808 subumgr 28809 subusgr 28810 subgrwlk 34418 |
Copyright terms: Public domain | W3C validator |