![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgrprop2 | Structured version Visualization version GIF version |
Description: The properties of a subgraph: If 𝑆 is a subgraph of 𝐺, its vertices are also vertices of 𝐺, and its edges are also edges of 𝐺, connecting vertices of the subgraph only. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
issubgr.v | ⊢ 𝑉 = (Vtx‘𝑆) |
issubgr.a | ⊢ 𝐴 = (Vtx‘𝐺) |
issubgr.i | ⊢ 𝐼 = (iEdg‘𝑆) |
issubgr.b | ⊢ 𝐵 = (iEdg‘𝐺) |
issubgr.e | ⊢ 𝐸 = (Edg‘𝑆) |
Ref | Expression |
---|---|
subgrprop2 | ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubgr.v | . . 3 ⊢ 𝑉 = (Vtx‘𝑆) | |
2 | issubgr.a | . . 3 ⊢ 𝐴 = (Vtx‘𝐺) | |
3 | issubgr.i | . . 3 ⊢ 𝐼 = (iEdg‘𝑆) | |
4 | issubgr.b | . . 3 ⊢ 𝐵 = (iEdg‘𝐺) | |
5 | issubgr.e | . . 3 ⊢ 𝐸 = (Edg‘𝑆) | |
6 | 1, 2, 3, 4, 5 | subgrprop 29308 | . 2 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉)) |
7 | resss 6031 | . . . 4 ⊢ (𝐵 ↾ dom 𝐼) ⊆ 𝐵 | |
8 | sseq1 4034 | . . . 4 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → (𝐼 ⊆ 𝐵 ↔ (𝐵 ↾ dom 𝐼) ⊆ 𝐵)) | |
9 | 7, 8 | mpbiri 258 | . . 3 ⊢ (𝐼 = (𝐵 ↾ dom 𝐼) → 𝐼 ⊆ 𝐵) |
10 | 9 | 3anim2i 1153 | . 2 ⊢ ((𝑉 ⊆ 𝐴 ∧ 𝐼 = (𝐵 ↾ dom 𝐼) ∧ 𝐸 ⊆ 𝒫 𝑉) → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
11 | 6, 10 | syl 17 | 1 ⊢ (𝑆 SubGraph 𝐺 → (𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ 𝐸 ⊆ 𝒫 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 Vtxcvtx 29031 iEdgciedg 29032 Edgcedg 29082 SubGraph csubgr 29302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-res 5712 df-iota 6525 df-fv 6581 df-subgr 29303 |
This theorem is referenced by: uhgrissubgr 29310 subgrprop3 29311 subgrfun 29316 subgreldmiedg 29318 subgruhgredgd 29319 subumgredg2 29320 subuhgr 29321 subupgr 29322 subumgr 29323 subusgr 29324 subgrwlk 35100 |
Copyright terms: Public domain | W3C validator |