![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > welb | Structured version Visualization version GIF version |
Description: A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
welb | ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (◡𝑅 Or 𝐵 ∧ ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wess 5624 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 We 𝐴 → 𝑅 We 𝐵)) | |
2 | 1 | impcom 409 | . . . . 5 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 We 𝐵) |
3 | weso 5628 | . . . . 5 ⊢ (𝑅 We 𝐵 → 𝑅 Or 𝐵) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 Or 𝐵) |
5 | cnvso 6244 | . . . 4 ⊢ (𝑅 Or 𝐵 ↔ ◡𝑅 Or 𝐵) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → ◡𝑅 Or 𝐵) |
7 | 6 | 3ad2antr2 1190 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ◡𝑅 Or 𝐵) |
8 | wefr 5627 | . . . . 5 ⊢ (𝑅 We 𝐵 → 𝑅 Fr 𝐵) | |
9 | 2, 8 | syl 17 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 Fr 𝐵) |
10 | 9 | 3ad2antr2 1190 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝑅 Fr 𝐵) |
11 | ssidd 3971 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 ⊆ 𝐵) | |
12 | 11 | 3anim2i 1154 | . . . 4 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅)) |
13 | 12 | adantl 483 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅)) |
14 | frinfm 36244 | . . 3 ⊢ ((𝑅 Fr 𝐵 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | |
15 | 10, 13, 14 | syl2anc 585 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
16 | 7, 15 | jca 513 | 1 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (◡𝑅 Or 𝐵 ∧ ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3914 ∅c0 4286 class class class wbr 5109 Or wor 5548 Fr wfr 5589 We wwe 5591 ◡ccnv 5636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-cnv 5645 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |