| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > welb | Structured version Visualization version GIF version | ||
| Description: A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| welb | ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (◡𝑅 Or 𝐵 ∧ ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wess 5607 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 We 𝐴 → 𝑅 We 𝐵)) | |
| 2 | 1 | impcom 407 | . . . . 5 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 We 𝐵) |
| 3 | weso 5612 | . . . . 5 ⊢ (𝑅 We 𝐵 → 𝑅 Or 𝐵) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 Or 𝐵) |
| 5 | cnvso 6243 | . . . 4 ⊢ (𝑅 Or 𝐵 ↔ ◡𝑅 Or 𝐵) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → ◡𝑅 Or 𝐵) |
| 7 | 6 | 3ad2antr2 1190 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ◡𝑅 Or 𝐵) |
| 8 | wefr 5611 | . . . . 5 ⊢ (𝑅 We 𝐵 → 𝑅 Fr 𝐵) | |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 Fr 𝐵) |
| 10 | 9 | 3ad2antr2 1190 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝑅 Fr 𝐵) |
| 11 | ssidd 3954 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 ⊆ 𝐵) | |
| 12 | 11 | 3anim2i 1153 | . . . 4 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅)) |
| 14 | frinfm 37848 | . . 3 ⊢ ((𝑅 Fr 𝐵 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | |
| 15 | 10, 13, 14 | syl2anc 584 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
| 16 | 7, 15 | jca 511 | 1 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (◡𝑅 Or 𝐵 ∧ ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 ∅c0 4282 class class class wbr 5095 Or wor 5528 Fr wfr 5571 We wwe 5573 ◡ccnv 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-cnv 5629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |