Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > welb | Structured version Visualization version GIF version |
Description: A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
welb | ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (◡𝑅 Or 𝐵 ∧ ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wess 5567 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 We 𝐴 → 𝑅 We 𝐵)) | |
2 | 1 | impcom 407 | . . . . 5 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 We 𝐵) |
3 | weso 5571 | . . . . 5 ⊢ (𝑅 We 𝐵 → 𝑅 Or 𝐵) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 Or 𝐵) |
5 | cnvso 6180 | . . . 4 ⊢ (𝑅 Or 𝐵 ↔ ◡𝑅 Or 𝐵) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → ◡𝑅 Or 𝐵) |
7 | 6 | 3ad2antr2 1187 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ◡𝑅 Or 𝐵) |
8 | wefr 5570 | . . . . 5 ⊢ (𝑅 We 𝐵 → 𝑅 Fr 𝐵) | |
9 | 2, 8 | syl 17 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝑅 Fr 𝐵) |
10 | 9 | 3ad2antr2 1187 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → 𝑅 Fr 𝐵) |
11 | ssidd 3940 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 ⊆ 𝐵) | |
12 | 11 | 3anim2i 1151 | . . . 4 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅)) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅)) |
14 | frinfm 35820 | . . 3 ⊢ ((𝑅 Fr 𝐵 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐵 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | |
15 | 10, 13, 14 | syl2anc 583 | . 2 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) |
16 | 7, 15 | jca 511 | 1 ⊢ ((𝑅 We 𝐴 ∧ (𝐵 ∈ 𝐶 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → (◡𝑅 Or 𝐵 ∧ ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 Or wor 5493 Fr wfr 5532 We wwe 5534 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-cnv 5588 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |