Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  welb Structured version   Visualization version   GIF version

Theorem welb 37730
Description: A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
welb ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (𝑅 Or 𝐵 ∧ ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Proof of Theorem welb
StepHypRef Expression
1 wess 5624 . . . . . 6 (𝐵𝐴 → (𝑅 We 𝐴𝑅 We 𝐵))
21impcom 407 . . . . 5 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 We 𝐵)
3 weso 5629 . . . . 5 (𝑅 We 𝐵𝑅 Or 𝐵)
42, 3syl 17 . . . 4 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 Or 𝐵)
5 cnvso 6261 . . . 4 (𝑅 Or 𝐵𝑅 Or 𝐵)
64, 5sylib 218 . . 3 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 Or 𝐵)
763ad2antr2 1190 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐵)
8 wefr 5628 . . . . 5 (𝑅 We 𝐵𝑅 Fr 𝐵)
92, 8syl 17 . . . 4 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 Fr 𝐵)
1093ad2antr2 1190 . . 3 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Fr 𝐵)
11 ssidd 3970 . . . . 5 (𝐵𝐴𝐵𝐵)
12113anim2i 1153 . . . 4 ((𝐵𝐶𝐵𝐴𝐵 ≠ ∅) → (𝐵𝐶𝐵𝐵𝐵 ≠ ∅))
1312adantl 481 . . 3 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (𝐵𝐶𝐵𝐵𝐵 ≠ ∅))
14 frinfm 37729 . . 3 ((𝑅 Fr 𝐵 ∧ (𝐵𝐶𝐵𝐵𝐵 ≠ ∅)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
1510, 13, 14syl2anc 584 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
167, 15jca 511 1 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (𝑅 Or 𝐵 ∧ ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296   class class class wbr 5107   Or wor 5545   Fr wfr 5588   We wwe 5590  ccnv 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-cnv 5646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator