Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  welb Structured version   Visualization version   GIF version

Theorem welb 37849
Description: A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
welb ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (𝑅 Or 𝐵 ∧ ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Proof of Theorem welb
StepHypRef Expression
1 wess 5607 . . . . . 6 (𝐵𝐴 → (𝑅 We 𝐴𝑅 We 𝐵))
21impcom 407 . . . . 5 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 We 𝐵)
3 weso 5612 . . . . 5 (𝑅 We 𝐵𝑅 Or 𝐵)
42, 3syl 17 . . . 4 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 Or 𝐵)
5 cnvso 6243 . . . 4 (𝑅 Or 𝐵𝑅 Or 𝐵)
64, 5sylib 218 . . 3 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 Or 𝐵)
763ad2antr2 1190 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Or 𝐵)
8 wefr 5611 . . . . 5 (𝑅 We 𝐵𝑅 Fr 𝐵)
92, 8syl 17 . . . 4 ((𝑅 We 𝐴𝐵𝐴) → 𝑅 Fr 𝐵)
1093ad2antr2 1190 . . 3 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → 𝑅 Fr 𝐵)
11 ssidd 3954 . . . . 5 (𝐵𝐴𝐵𝐵)
12113anim2i 1153 . . . 4 ((𝐵𝐶𝐵𝐴𝐵 ≠ ∅) → (𝐵𝐶𝐵𝐵𝐵 ≠ ∅))
1312adantl 481 . . 3 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (𝐵𝐶𝐵𝐵𝐵 ≠ ∅))
14 frinfm 37848 . . 3 ((𝑅 Fr 𝐵 ∧ (𝐵𝐶𝐵𝐵𝐵 ≠ ∅)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
1510, 13, 14syl2anc 584 . 2 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
167, 15jca 511 1 ((𝑅 We 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (𝑅 Or 𝐵 ∧ ∃𝑥𝐵 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2113  wne 2929  wral 3048  wrex 3057  wss 3898  c0 4282   class class class wbr 5095   Or wor 5528   Fr wfr 5571   We wwe 5573  ccnv 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-cnv 5629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator