| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr3g | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3eltr3g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3eltr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eltr3g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 3eltr3g.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrrid 2838 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 4 | 3eltr3g.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eleqtrdi 2843 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-clel 2808 |
| This theorem is referenced by: rankelpr 9896 isf34lem7 10402 rmulccn 33868 xrge0mulc1cn 33881 esumpfinvallem 34016 fourierdlem62 46128 |
| Copyright terms: Public domain | W3C validator |