![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eltr3g | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
3eltr3g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr3g.2 | ⊢ 𝐴 = 𝐶 |
3eltr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eltr3g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | 3eltr3g.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrrid 2836 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
4 | 3eltr3g.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | eleqtrdi 2841 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-clel 2808 |
This theorem is referenced by: rankelpr 9870 isf34lem7 10376 rmulccn 33206 xrge0mulc1cn 33219 esumpfinvallem 33370 gg-rmulccn 35465 fourierdlem62 45182 |
Copyright terms: Public domain | W3C validator |