Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eltr4d | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3eltr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3eltr4d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3eltr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 3eltr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | eleqtrrd 2840 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
5 | 1, 4 | eqeltrd 2837 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Copyright terms: Public domain | W3C validator |