MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelpr Structured version   Visualization version   GIF version

Theorem rankelpr 9766
Description: Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
rankelun.1 𝐴 ∈ V
rankelun.2 𝐵 ∈ V
rankelun.3 𝐶 ∈ V
rankelun.4 𝐷 ∈ V
Assertion
Ref Expression
rankelpr (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}))

Proof of Theorem rankelpr
StepHypRef Expression
1 rankelun.1 . . . . 5 𝐴 ∈ V
2 rankelun.2 . . . . 5 𝐵 ∈ V
3 rankelun.3 . . . . 5 𝐶 ∈ V
4 rankelun.4 . . . . 5 𝐷 ∈ V
51, 2, 3, 4rankelun 9765 . . . 4 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴𝐵)) ∈ (rank‘(𝐶𝐷)))
61, 2rankun 9749 . . . 4 (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))
73, 4rankun 9749 . . . 4 (rank‘(𝐶𝐷)) = ((rank‘𝐶) ∪ (rank‘𝐷))
85, 6, 73eltr3g 2847 . . 3 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)))
9 rankon 9688 . . . . . 6 (rank‘𝐶) ∈ On
10 rankon 9688 . . . . . 6 (rank‘𝐷) ∈ On
119, 10onun2i 6429 . . . . 5 ((rank‘𝐶) ∪ (rank‘𝐷)) ∈ On
1211onordi 6419 . . . 4 Ord ((rank‘𝐶) ∪ (rank‘𝐷))
13 ordsucelsuc 7752 . . . 4 (Ord ((rank‘𝐶) ∪ (rank‘𝐷)) → (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ↔ suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷))))
1412, 13ax-mp 5 . . 3 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ↔ suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷)))
158, 14sylib 218 . 2 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷)))
161, 2rankpr 9750 . 2 (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))
173, 4rankpr 9750 . 2 (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷))
1815, 16, 173eltr4g 2848 1 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  Vcvv 3436  cun 3895  {cpr 4575  Ord word 6305  suc csuc 6308  cfv 6481  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658
This theorem is referenced by:  rankelop  9767
  Copyright terms: Public domain W3C validator