Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankelpr | Structured version Visualization version GIF version |
Description: Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankelun.1 | ⊢ 𝐴 ∈ V |
rankelun.2 | ⊢ 𝐵 ∈ V |
rankelun.3 | ⊢ 𝐶 ∈ V |
rankelun.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
rankelpr | ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankelun.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | rankelun.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | rankelun.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
4 | rankelun.4 | . . . . 5 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | rankelun 9701 | . . . 4 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) |
6 | 1, 2 | rankun 9685 | . . . 4 ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) |
7 | 3, 4 | rankun 9685 | . . . 4 ⊢ (rank‘(𝐶 ∪ 𝐷)) = ((rank‘𝐶) ∪ (rank‘𝐷)) |
8 | 5, 6, 7 | 3eltr3g 2854 | . . 3 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) |
9 | rankon 9624 | . . . . . 6 ⊢ (rank‘𝐶) ∈ On | |
10 | rankon 9624 | . . . . . 6 ⊢ (rank‘𝐷) ∈ On | |
11 | 9, 10 | onun2i 6408 | . . . . 5 ⊢ ((rank‘𝐶) ∪ (rank‘𝐷)) ∈ On |
12 | 11 | onordi 6397 | . . . 4 ⊢ Ord ((rank‘𝐶) ∪ (rank‘𝐷)) |
13 | ordsucelsuc 7712 | . . . 4 ⊢ (Ord ((rank‘𝐶) ∪ (rank‘𝐷)) → (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ↔ suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷)))) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ↔ suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷))) |
15 | 8, 14 | sylib 217 | . 2 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷))) |
16 | 1, 2 | rankpr 9686 | . 2 ⊢ (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
17 | 3, 4 | rankpr 9686 | . 2 ⊢ (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
18 | 15, 16, 17 | 3eltr4g 2855 | 1 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 Vcvv 3441 ∪ cun 3895 {cpr 4573 Ord word 6287 suc csuc 6290 ‘cfv 6465 rankcrnk 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-reg 9421 ax-inf2 9470 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-r1 9593 df-rank 9594 |
This theorem is referenced by: rankelop 9703 |
Copyright terms: Public domain | W3C validator |