Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankelpr | Structured version Visualization version GIF version |
Description: Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankelun.1 | ⊢ 𝐴 ∈ V |
rankelun.2 | ⊢ 𝐵 ∈ V |
rankelun.3 | ⊢ 𝐶 ∈ V |
rankelun.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
rankelpr | ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankelun.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | rankelun.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | rankelun.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
4 | rankelun.4 | . . . . 5 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | rankelun 9678 | . . . 4 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) |
6 | 1, 2 | rankun 9662 | . . . 4 ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) |
7 | 3, 4 | rankun 9662 | . . . 4 ⊢ (rank‘(𝐶 ∪ 𝐷)) = ((rank‘𝐶) ∪ (rank‘𝐷)) |
8 | 5, 6, 7 | 3eltr3g 2853 | . . 3 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) |
9 | rankon 9601 | . . . . . 6 ⊢ (rank‘𝐶) ∈ On | |
10 | rankon 9601 | . . . . . 6 ⊢ (rank‘𝐷) ∈ On | |
11 | 9, 10 | onun2i 6401 | . . . . 5 ⊢ ((rank‘𝐶) ∪ (rank‘𝐷)) ∈ On |
12 | 11 | onordi 6390 | . . . 4 ⊢ Ord ((rank‘𝐶) ∪ (rank‘𝐷)) |
13 | ordsucelsuc 7701 | . . . 4 ⊢ (Ord ((rank‘𝐶) ∪ (rank‘𝐷)) → (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ↔ suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷)))) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ↔ suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷))) |
15 | 8, 14 | sylib 217 | . 2 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷))) |
16 | 1, 2 | rankpr 9663 | . 2 ⊢ (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
17 | 3, 4 | rankpr 9663 | . 2 ⊢ (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
18 | 15, 16, 17 | 3eltr4g 2854 | 1 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 Vcvv 3437 ∪ cun 3890 {cpr 4567 Ord word 6280 suc csuc 6283 ‘cfv 6458 rankcrnk 9569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-reg 9399 ax-inf2 9447 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-r1 9570 df-rank 9571 |
This theorem is referenced by: rankelop 9680 |
Copyright terms: Public domain | W3C validator |