![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankelpr | Structured version Visualization version GIF version |
Description: Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankelun.1 | ⊢ 𝐴 ∈ V |
rankelun.2 | ⊢ 𝐵 ∈ V |
rankelun.3 | ⊢ 𝐶 ∈ V |
rankelun.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
rankelpr | ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankelun.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | rankelun.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | rankelun.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
4 | rankelun.4 | . . . . 5 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | rankelun 9019 | . . . 4 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) |
6 | 1, 2 | rankun 9003 | . . . 4 ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) |
7 | 3, 4 | rankun 9003 | . . . 4 ⊢ (rank‘(𝐶 ∪ 𝐷)) = ((rank‘𝐶) ∪ (rank‘𝐷)) |
8 | 5, 6, 7 | 3eltr3g 2922 | . . 3 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) |
9 | rankon 8942 | . . . . . 6 ⊢ (rank‘𝐶) ∈ On | |
10 | rankon 8942 | . . . . . 6 ⊢ (rank‘𝐷) ∈ On | |
11 | 9, 10 | onun2i 6082 | . . . . 5 ⊢ ((rank‘𝐶) ∪ (rank‘𝐷)) ∈ On |
12 | 11 | onordi 6071 | . . . 4 ⊢ Ord ((rank‘𝐶) ∪ (rank‘𝐷)) |
13 | ordsucelsuc 7288 | . . . 4 ⊢ (Ord ((rank‘𝐶) ∪ (rank‘𝐷)) → (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ↔ suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷)))) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ↔ suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷))) |
15 | 8, 14 | sylib 210 | . 2 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ suc ((rank‘𝐶) ∪ (rank‘𝐷))) |
16 | 1, 2 | rankpr 9004 | . 2 ⊢ (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
17 | 3, 4 | rankpr 9004 | . 2 ⊢ (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
18 | 15, 16, 17 | 3eltr4g 2923 | 1 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2164 Vcvv 3414 ∪ cun 3796 {cpr 4401 Ord word 5966 suc csuc 5969 ‘cfv 6127 rankcrnk 8910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-reg 8773 ax-inf2 8822 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-r1 8911 df-rank 8912 |
This theorem is referenced by: rankelop 9021 |
Copyright terms: Public domain | W3C validator |