Proof of Theorem isf34lem7
Step | Hyp | Ref
| Expression |
1 | | compss.a |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
2 | 1 | isf34lem2 10060 |
. . . . . 6
⊢ (𝐴 ∈ FinIII →
𝐹:𝒫 𝐴⟶𝒫 𝐴) |
3 | 2 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → 𝐹:𝒫 𝐴⟶𝒫 𝐴) |
4 | 3 | 3adant3 1130 |
. . . 4
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴) |
5 | 4 | ffnd 6585 |
. . 3
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐹 Fn 𝒫 𝐴) |
6 | | imassrn 5969 |
. . . 4
⊢ (𝐹 “ ran 𝐺) ⊆ ran 𝐹 |
7 | 3 | frnd 6592 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ran 𝐹 ⊆ 𝒫 𝐴) |
8 | 7 | 3adant3 1130 |
. . . 4
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ran 𝐹 ⊆ 𝒫 𝐴) |
9 | 6, 8 | sstrid 3928 |
. . 3
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴) |
10 | | simp1 1134 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐴 ∈ FinIII) |
11 | | fco 6608 |
. . . . . . 7
⊢ ((𝐹:𝒫 𝐴⟶𝒫 𝐴 ∧ 𝐺:ω⟶𝒫 𝐴) → (𝐹 ∘ 𝐺):ω⟶𝒫 𝐴) |
12 | 2, 11 | sylan 579 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹 ∘ 𝐺):ω⟶𝒫 𝐴) |
13 | 12 | 3adant3 1130 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 ∘ 𝐺):ω⟶𝒫 𝐴) |
14 | | sscon 4069 |
. . . . . . . 8
⊢ ((𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴 ∖ (𝐺‘suc 𝑦)) ⊆ (𝐴 ∖ (𝐺‘𝑦))) |
15 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → 𝐺:ω⟶𝒫 𝐴) |
16 | | peano2 7711 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
17 | | fvco3 6849 |
. . . . . . . . . . 11
⊢ ((𝐺:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘suc 𝑦) = (𝐹‘(𝐺‘suc 𝑦))) |
18 | 15, 16, 17 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘suc 𝑦) = (𝐹‘(𝐺‘suc 𝑦))) |
19 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ∈ FinIII) |
20 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ∈ 𝒫 𝐴) |
21 | 15, 16, 20 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ∈ 𝒫 𝐴) |
22 | 21 | elpwid 4541 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ⊆ 𝐴) |
23 | 1 | isf34lem1 10059 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
(𝐺‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) = (𝐴 ∖ (𝐺‘suc 𝑦))) |
24 | 19, 22, 23 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐹‘(𝐺‘suc 𝑦)) = (𝐴 ∖ (𝐺‘suc 𝑦))) |
25 | 18, 24 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘suc 𝑦) = (𝐴 ∖ (𝐺‘suc 𝑦))) |
26 | | fvco3 6849 |
. . . . . . . . . . 11
⊢ ((𝐺:ω⟶𝒫 𝐴 ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
27 | 26 | adantll 710 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
28 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ω⟶𝒫 𝐴 ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ 𝒫 𝐴) |
29 | 28 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ 𝒫 𝐴) |
30 | 29 | elpwid 4541 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ⊆ 𝐴) |
31 | 1 | isf34lem1 10059 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
(𝐺‘𝑦) ⊆ 𝐴) → (𝐹‘(𝐺‘𝑦)) = (𝐴 ∖ (𝐺‘𝑦))) |
32 | 19, 30, 31 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐹‘(𝐺‘𝑦)) = (𝐴 ∖ (𝐺‘𝑦))) |
33 | 27, 32 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐴 ∖ (𝐺‘𝑦))) |
34 | 25, 33 | sseq12d 3950 |
. . . . . . . 8
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦) ↔ (𝐴 ∖ (𝐺‘suc 𝑦)) ⊆ (𝐴 ∖ (𝐺‘𝑦)))) |
35 | 14, 34 | syl5ibr 245 |
. . . . . . 7
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → ((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦))) |
36 | 35 | ralimdva 3102 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → ∀𝑦 ∈ ω ((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦))) |
37 | 36 | 3impia 1115 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ∀𝑦 ∈ ω ((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦)) |
38 | | fin33i 10056 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
(𝐹 ∘ 𝐺):ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω ((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦)) → ∩ ran
(𝐹 ∘ 𝐺) ∈ ran (𝐹 ∘ 𝐺)) |
39 | 10, 13, 37, 38 | syl3anc 1369 |
. . . 4
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ∩ ran
(𝐹 ∘ 𝐺) ∈ ran (𝐹 ∘ 𝐺)) |
40 | | rnco2 6146 |
. . . . 5
⊢ ran
(𝐹 ∘ 𝐺) = (𝐹 “ ran 𝐺) |
41 | 40 | inteqi 4880 |
. . . 4
⊢ ∩ ran (𝐹 ∘ 𝐺) = ∩ (𝐹 “ ran 𝐺) |
42 | 39, 41, 40 | 3eltr3g 2855 |
. . 3
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ∩ (𝐹 “ ran 𝐺) ∈ (𝐹 “ ran 𝐺)) |
43 | | fnfvima 7091 |
. . 3
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴 ∧ ∩ (𝐹 “ ran 𝐺) ∈ (𝐹 “ ran 𝐺)) → (𝐹‘∩ (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺))) |
44 | 5, 9, 42, 43 | syl3anc 1369 |
. 2
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹‘∩ (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺))) |
45 | | simpl 482 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → 𝐴 ∈ FinIII) |
46 | 6, 7 | sstrid 3928 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴) |
47 | | incom 4131 |
. . . . . . . . 9
⊢ (dom
𝐹 ∩ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹) |
48 | | frn 6591 |
. . . . . . . . . . . 12
⊢ (𝐺:ω⟶𝒫 𝐴 → ran 𝐺 ⊆ 𝒫 𝐴) |
49 | 48 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ran 𝐺 ⊆ 𝒫 𝐴) |
50 | 3 | fdmd 6595 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → dom 𝐹 = 𝒫 𝐴) |
51 | 49, 50 | sseqtrrd 3958 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ran 𝐺 ⊆ dom 𝐹) |
52 | | df-ss 3900 |
. . . . . . . . . 10
⊢ (ran
𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) |
53 | 51, 52 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) |
54 | 47, 53 | eqtrid 2790 |
. . . . . . . 8
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (dom 𝐹 ∩ ran 𝐺) = ran 𝐺) |
55 | | fdm 6593 |
. . . . . . . . . . 11
⊢ (𝐺:ω⟶𝒫 𝐴 → dom 𝐺 = ω) |
56 | 55 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → dom 𝐺 = ω) |
57 | | peano1 7710 |
. . . . . . . . . . 11
⊢ ∅
∈ ω |
58 | | ne0i 4265 |
. . . . . . . . . . 11
⊢ (∅
∈ ω → ω ≠ ∅) |
59 | 57, 58 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ω ≠
∅) |
60 | 56, 59 | eqnetrd 3010 |
. . . . . . . . 9
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → dom 𝐺 ≠ ∅) |
61 | | dm0rn0 5823 |
. . . . . . . . . 10
⊢ (dom
𝐺 = ∅ ↔ ran
𝐺 =
∅) |
62 | 61 | necon3bii 2995 |
. . . . . . . . 9
⊢ (dom
𝐺 ≠ ∅ ↔ ran
𝐺 ≠
∅) |
63 | 60, 62 | sylib 217 |
. . . . . . . 8
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ran 𝐺 ≠ ∅) |
64 | 54, 63 | eqnetrd 3010 |
. . . . . . 7
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (dom 𝐹 ∩ ran 𝐺) ≠ ∅) |
65 | | imadisj 5977 |
. . . . . . . 8
⊢ ((𝐹 “ ran 𝐺) = ∅ ↔ (dom 𝐹 ∩ ran 𝐺) = ∅) |
66 | 65 | necon3bii 2995 |
. . . . . . 7
⊢ ((𝐹 “ ran 𝐺) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝐺) ≠ ∅) |
67 | 64, 66 | sylibr 233 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹 “ ran 𝐺) ≠ ∅) |
68 | 1 | isf34lem5 10065 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
((𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝐺) ≠ ∅)) → (𝐹‘∩ (𝐹 “ ran 𝐺)) = ∪ (𝐹 “ (𝐹 “ ran 𝐺))) |
69 | 45, 46, 67, 68 | syl12anc 833 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹‘∩ (𝐹
“ ran 𝐺)) = ∪ (𝐹
“ (𝐹 “ ran
𝐺))) |
70 | 1 | isf34lem3 10062 |
. . . . . . 7
⊢ ((𝐴 ∈ FinIII ∧
ran 𝐺 ⊆ 𝒫
𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺) |
71 | 45, 49, 70 | syl2anc 583 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺) |
72 | 71 | unieqd 4850 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ∪ (𝐹
“ (𝐹 “ ran
𝐺)) = ∪ ran 𝐺) |
73 | 69, 72 | eqtrd 2778 |
. . . 4
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹‘∩ (𝐹
“ ran 𝐺)) = ∪ ran 𝐺) |
74 | 73, 71 | eleq12d 2833 |
. . 3
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ((𝐹‘∩ (𝐹
“ ran 𝐺)) ∈
(𝐹 “ (𝐹 “ ran 𝐺)) ↔ ∪ ran
𝐺 ∈ ran 𝐺)) |
75 | 74 | 3adant3 1130 |
. 2
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ((𝐹‘∩ (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)) ↔ ∪ ran
𝐺 ∈ ran 𝐺)) |
76 | 44, 75 | mpbid 231 |
1
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ∪ ran
𝐺 ∈ ran 𝐺) |