MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem7 Structured version   Visualization version   GIF version

Theorem isf34lem7 9458
Description: Lemma for isfin3-4 9461. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem7 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ran 𝐺 ∈ ran 𝐺)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐹   𝑦,𝐺
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem isf34lem7
StepHypRef Expression
1 compss.a . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
21isf34lem2 9452 . . . . . 6 (𝐴 ∈ FinIII𝐹:𝒫 𝐴⟶𝒫 𝐴)
32adantr 472 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
433adant3 1162 . . . 4 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
54ffnd 6226 . . 3 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐹 Fn 𝒫 𝐴)
6 imassrn 5661 . . . 4 (𝐹 “ ran 𝐺) ⊆ ran 𝐹
73frnd 6232 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ran 𝐹 ⊆ 𝒫 𝐴)
873adant3 1162 . . . 4 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ran 𝐹 ⊆ 𝒫 𝐴)
96, 8syl5ss 3774 . . 3 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴)
10 simp1 1166 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐴 ∈ FinIII)
11 fco 6242 . . . . . . 7 ((𝐹:𝒫 𝐴⟶𝒫 𝐴𝐺:ω⟶𝒫 𝐴) → (𝐹𝐺):ω⟶𝒫 𝐴)
122, 11sylan 575 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹𝐺):ω⟶𝒫 𝐴)
13123adant3 1162 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹𝐺):ω⟶𝒫 𝐴)
14 sscon 3908 . . . . . . . 8 ((𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴 ∖ (𝐺‘suc 𝑦)) ⊆ (𝐴 ∖ (𝐺𝑦)))
15 simpr 477 . . . . . . . . . . 11 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → 𝐺:ω⟶𝒫 𝐴)
16 peano2 7288 . . . . . . . . . . 11 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
17 fvco3 6468 . . . . . . . . . . 11 ((𝐺:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹𝐺)‘suc 𝑦) = (𝐹‘(𝐺‘suc 𝑦)))
1815, 16, 17syl2an 589 . . . . . . . . . 10 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐹𝐺)‘suc 𝑦) = (𝐹‘(𝐺‘suc 𝑦)))
19 simpll 783 . . . . . . . . . . 11 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ∈ FinIII)
20 ffvelrn 6551 . . . . . . . . . . . . 13 ((𝐺:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ∈ 𝒫 𝐴)
2115, 16, 20syl2an 589 . . . . . . . . . . . 12 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ∈ 𝒫 𝐴)
2221elpwid 4329 . . . . . . . . . . 11 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ⊆ 𝐴)
231isf34lem1 9451 . . . . . . . . . . 11 ((𝐴 ∈ FinIII ∧ (𝐺‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) = (𝐴 ∖ (𝐺‘suc 𝑦)))
2419, 22, 23syl2anc 579 . . . . . . . . . 10 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐹‘(𝐺‘suc 𝑦)) = (𝐴 ∖ (𝐺‘suc 𝑦)))
2518, 24eqtrd 2799 . . . . . . . . 9 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐹𝐺)‘suc 𝑦) = (𝐴 ∖ (𝐺‘suc 𝑦)))
26 fvco3 6468 . . . . . . . . . . 11 ((𝐺:ω⟶𝒫 𝐴𝑦 ∈ ω) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2726adantll 705 . . . . . . . . . 10 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
28 ffvelrn 6551 . . . . . . . . . . . . 13 ((𝐺:ω⟶𝒫 𝐴𝑦 ∈ ω) → (𝐺𝑦) ∈ 𝒫 𝐴)
2928adantll 705 . . . . . . . . . . . 12 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐺𝑦) ∈ 𝒫 𝐴)
3029elpwid 4329 . . . . . . . . . . 11 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐺𝑦) ⊆ 𝐴)
311isf34lem1 9451 . . . . . . . . . . 11 ((𝐴 ∈ FinIII ∧ (𝐺𝑦) ⊆ 𝐴) → (𝐹‘(𝐺𝑦)) = (𝐴 ∖ (𝐺𝑦)))
3219, 30, 31syl2anc 579 . . . . . . . . . 10 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐹‘(𝐺𝑦)) = (𝐴 ∖ (𝐺𝑦)))
3327, 32eqtrd 2799 . . . . . . . . 9 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐹𝐺)‘𝑦) = (𝐴 ∖ (𝐺𝑦)))
3425, 33sseq12d 3796 . . . . . . . 8 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦) ↔ (𝐴 ∖ (𝐺‘suc 𝑦)) ⊆ (𝐴 ∖ (𝐺𝑦))))
3514, 34syl5ibr 237 . . . . . . 7 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → ((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦)))
3635ralimdva 3109 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → ∀𝑦 ∈ ω ((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦)))
37363impia 1145 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ∀𝑦 ∈ ω ((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦))
38 fin33i 9448 . . . . 5 ((𝐴 ∈ FinIII ∧ (𝐹𝐺):ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω ((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦)) → ran (𝐹𝐺) ∈ ran (𝐹𝐺))
3910, 13, 37, 38syl3anc 1490 . . . 4 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ran (𝐹𝐺) ∈ ran (𝐹𝐺))
40 rnco2 5830 . . . . 5 ran (𝐹𝐺) = (𝐹 “ ran 𝐺)
4140inteqi 4639 . . . 4 ran (𝐹𝐺) = (𝐹 “ ran 𝐺)
4239, 41, 403eltr3g 2860 . . 3 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 “ ran 𝐺) ∈ (𝐹 “ ran 𝐺))
43 fnfvima 6693 . . 3 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴 (𝐹 “ ran 𝐺) ∈ (𝐹 “ ran 𝐺)) → (𝐹 (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)))
445, 9, 42, 43syl3anc 1490 . 2 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)))
45 simpl 474 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → 𝐴 ∈ FinIII)
466, 7syl5ss 3774 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴)
47 incom 3969 . . . . . . . . 9 (dom 𝐹 ∩ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹)
48 frn 6231 . . . . . . . . . . . 12 (𝐺:ω⟶𝒫 𝐴 → ran 𝐺 ⊆ 𝒫 𝐴)
4948adantl 473 . . . . . . . . . . 11 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ran 𝐺 ⊆ 𝒫 𝐴)
503fdmd 6234 . . . . . . . . . . 11 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → dom 𝐹 = 𝒫 𝐴)
5149, 50sseqtr4d 3804 . . . . . . . . . 10 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ran 𝐺 ⊆ dom 𝐹)
52 df-ss 3748 . . . . . . . . . 10 (ran 𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
5351, 52sylib 209 . . . . . . . . 9 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
5447, 53syl5eq 2811 . . . . . . . 8 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (dom 𝐹 ∩ ran 𝐺) = ran 𝐺)
55 fdm 6233 . . . . . . . . . . 11 (𝐺:ω⟶𝒫 𝐴 → dom 𝐺 = ω)
5655adantl 473 . . . . . . . . . 10 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → dom 𝐺 = ω)
57 peano1 7287 . . . . . . . . . . 11 ∅ ∈ ω
58 ne0i 4087 . . . . . . . . . . 11 (∅ ∈ ω → ω ≠ ∅)
5957, 58mp1i 13 . . . . . . . . . 10 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ω ≠ ∅)
6056, 59eqnetrd 3004 . . . . . . . . 9 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → dom 𝐺 ≠ ∅)
61 dm0rn0 5512 . . . . . . . . . 10 (dom 𝐺 = ∅ ↔ ran 𝐺 = ∅)
6261necon3bii 2989 . . . . . . . . 9 (dom 𝐺 ≠ ∅ ↔ ran 𝐺 ≠ ∅)
6360, 62sylib 209 . . . . . . . 8 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ran 𝐺 ≠ ∅)
6454, 63eqnetrd 3004 . . . . . . 7 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (dom 𝐹 ∩ ran 𝐺) ≠ ∅)
65 imadisj 5668 . . . . . . . 8 ((𝐹 “ ran 𝐺) = ∅ ↔ (dom 𝐹 ∩ ran 𝐺) = ∅)
6665necon3bii 2989 . . . . . . 7 ((𝐹 “ ran 𝐺) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝐺) ≠ ∅)
6764, 66sylibr 225 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 “ ran 𝐺) ≠ ∅)
681isf34lem5 9457 . . . . . 6 ((𝐴 ∈ FinIII ∧ ((𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝐺) ≠ ∅)) → (𝐹 (𝐹 “ ran 𝐺)) = (𝐹 “ (𝐹 “ ran 𝐺)))
6945, 46, 67, 68syl12anc 865 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 (𝐹 “ ran 𝐺)) = (𝐹 “ (𝐹 “ ran 𝐺)))
701isf34lem3 9454 . . . . . . 7 ((𝐴 ∈ FinIII ∧ ran 𝐺 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺)
7145, 49, 70syl2anc 579 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺)
7271unieqd 4606 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺)
7369, 72eqtrd 2799 . . . 4 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 (𝐹 “ ran 𝐺)) = ran 𝐺)
7473, 71eleq12d 2838 . . 3 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ((𝐹 (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)) ↔ ran 𝐺 ∈ ran 𝐺))
75743adant3 1162 . 2 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ((𝐹 (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)) ↔ ran 𝐺 ∈ ran 𝐺))
7644, 75mpbid 223 1 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ran 𝐺 ∈ ran 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  cdif 3731  cin 3733  wss 3734  c0 4081  𝒫 cpw 4317   cuni 4596   cint 4635  cmpt 4890  dom cdm 5279  ran crn 5280  cima 5282  ccom 5283  suc csuc 5912   Fn wfn 6065  wf 6066  cfv 6070  ωcom 7267  FinIIIcfin3 9360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-rpss 7139  df-om 7268  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-wdom 8675  df-card 9020  df-fin4 9366  df-fin3 9367
This theorem is referenced by:  isf34lem6  9459  fin34i  9460
  Copyright terms: Public domain W3C validator