Proof of Theorem isf34lem7
| Step | Hyp | Ref
| Expression |
| 1 | | compss.a |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
| 2 | 1 | isf34lem2 10392 |
. . . . . 6
⊢ (𝐴 ∈ FinIII →
𝐹:𝒫 𝐴⟶𝒫 𝐴) |
| 3 | 2 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → 𝐹:𝒫 𝐴⟶𝒫 𝐴) |
| 4 | 3 | 3adant3 1132 |
. . . 4
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴) |
| 5 | 4 | ffnd 6712 |
. . 3
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐹 Fn 𝒫 𝐴) |
| 6 | | imassrn 6063 |
. . . 4
⊢ (𝐹 “ ran 𝐺) ⊆ ran 𝐹 |
| 7 | 3 | frnd 6719 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ran 𝐹 ⊆ 𝒫 𝐴) |
| 8 | 7 | 3adant3 1132 |
. . . 4
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ran 𝐹 ⊆ 𝒫 𝐴) |
| 9 | 6, 8 | sstrid 3975 |
. . 3
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴) |
| 10 | | simp1 1136 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐴 ∈ FinIII) |
| 11 | | fco 6735 |
. . . . . . 7
⊢ ((𝐹:𝒫 𝐴⟶𝒫 𝐴 ∧ 𝐺:ω⟶𝒫 𝐴) → (𝐹 ∘ 𝐺):ω⟶𝒫 𝐴) |
| 12 | 2, 11 | sylan 580 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹 ∘ 𝐺):ω⟶𝒫 𝐴) |
| 13 | 12 | 3adant3 1132 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 ∘ 𝐺):ω⟶𝒫 𝐴) |
| 14 | | sscon 4123 |
. . . . . . . 8
⊢ ((𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴 ∖ (𝐺‘suc 𝑦)) ⊆ (𝐴 ∖ (𝐺‘𝑦))) |
| 15 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → 𝐺:ω⟶𝒫 𝐴) |
| 16 | | peano2 7891 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
| 17 | | fvco3 6983 |
. . . . . . . . . . 11
⊢ ((𝐺:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘suc 𝑦) = (𝐹‘(𝐺‘suc 𝑦))) |
| 18 | 15, 16, 17 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘suc 𝑦) = (𝐹‘(𝐺‘suc 𝑦))) |
| 19 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ∈ FinIII) |
| 20 | | ffvelcdm 7076 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ∈ 𝒫 𝐴) |
| 21 | 15, 16, 20 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ∈ 𝒫 𝐴) |
| 22 | 21 | elpwid 4589 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ⊆ 𝐴) |
| 23 | 1 | isf34lem1 10391 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
(𝐺‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) = (𝐴 ∖ (𝐺‘suc 𝑦))) |
| 24 | 19, 22, 23 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐹‘(𝐺‘suc 𝑦)) = (𝐴 ∖ (𝐺‘suc 𝑦))) |
| 25 | 18, 24 | eqtrd 2771 |
. . . . . . . . 9
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘suc 𝑦) = (𝐴 ∖ (𝐺‘suc 𝑦))) |
| 26 | | fvco3 6983 |
. . . . . . . . . . 11
⊢ ((𝐺:ω⟶𝒫 𝐴 ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
| 27 | 26 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
| 28 | | ffvelcdm 7076 |
. . . . . . . . . . . . 13
⊢ ((𝐺:ω⟶𝒫 𝐴 ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ 𝒫 𝐴) |
| 29 | 28 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ 𝒫 𝐴) |
| 30 | 29 | elpwid 4589 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ⊆ 𝐴) |
| 31 | 1 | isf34lem1 10391 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
(𝐺‘𝑦) ⊆ 𝐴) → (𝐹‘(𝐺‘𝑦)) = (𝐴 ∖ (𝐺‘𝑦))) |
| 32 | 19, 30, 31 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (𝐹‘(𝐺‘𝑦)) = (𝐴 ∖ (𝐺‘𝑦))) |
| 33 | 27, 32 | eqtrd 2771 |
. . . . . . . . 9
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐴 ∖ (𝐺‘𝑦))) |
| 34 | 25, 33 | sseq12d 3997 |
. . . . . . . 8
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → (((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦) ↔ (𝐴 ∖ (𝐺‘suc 𝑦)) ⊆ (𝐴 ∖ (𝐺‘𝑦)))) |
| 35 | 14, 34 | imbitrrid 246 |
. . . . . . 7
⊢ (((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) ∧ 𝑦 ∈ ω) → ((𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → ((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦))) |
| 36 | 35 | ralimdva 3153 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦) → ∀𝑦 ∈ ω ((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦))) |
| 37 | 36 | 3impia 1117 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ∀𝑦 ∈ ω ((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦)) |
| 38 | | fin33i 10388 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
(𝐹 ∘ 𝐺):ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω ((𝐹 ∘ 𝐺)‘suc 𝑦) ⊆ ((𝐹 ∘ 𝐺)‘𝑦)) → ∩ ran
(𝐹 ∘ 𝐺) ∈ ran (𝐹 ∘ 𝐺)) |
| 39 | 10, 13, 37, 38 | syl3anc 1373 |
. . . 4
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ∩ ran
(𝐹 ∘ 𝐺) ∈ ran (𝐹 ∘ 𝐺)) |
| 40 | | rnco2 6247 |
. . . . 5
⊢ ran
(𝐹 ∘ 𝐺) = (𝐹 “ ran 𝐺) |
| 41 | 40 | inteqi 4931 |
. . . 4
⊢ ∩ ran (𝐹 ∘ 𝐺) = ∩ (𝐹 “ ran 𝐺) |
| 42 | 39, 41, 40 | 3eltr3g 2851 |
. . 3
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ∩ (𝐹 “ ran 𝐺) ∈ (𝐹 “ ran 𝐺)) |
| 43 | | fnfvima 7230 |
. . 3
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴 ∧ ∩ (𝐹 “ ran 𝐺) ∈ (𝐹 “ ran 𝐺)) → (𝐹‘∩ (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺))) |
| 44 | 5, 9, 42, 43 | syl3anc 1373 |
. 2
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹‘∩ (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺))) |
| 45 | | simpl 482 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → 𝐴 ∈ FinIII) |
| 46 | 6, 7 | sstrid 3975 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴) |
| 47 | | incom 4189 |
. . . . . . . . 9
⊢ (dom
𝐹 ∩ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹) |
| 48 | | frn 6718 |
. . . . . . . . . . . 12
⊢ (𝐺:ω⟶𝒫 𝐴 → ran 𝐺 ⊆ 𝒫 𝐴) |
| 49 | 48 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ran 𝐺 ⊆ 𝒫 𝐴) |
| 50 | 3 | fdmd 6721 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → dom 𝐹 = 𝒫 𝐴) |
| 51 | 49, 50 | sseqtrrd 4001 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ran 𝐺 ⊆ dom 𝐹) |
| 52 | | dfss2 3949 |
. . . . . . . . . 10
⊢ (ran
𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) |
| 53 | 51, 52 | sylib 218 |
. . . . . . . . 9
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (ran 𝐺 ∩ dom 𝐹) = ran 𝐺) |
| 54 | 47, 53 | eqtrid 2783 |
. . . . . . . 8
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (dom 𝐹 ∩ ran 𝐺) = ran 𝐺) |
| 55 | | fdm 6720 |
. . . . . . . . . . 11
⊢ (𝐺:ω⟶𝒫 𝐴 → dom 𝐺 = ω) |
| 56 | 55 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → dom 𝐺 = ω) |
| 57 | | peano1 7889 |
. . . . . . . . . . 11
⊢ ∅
∈ ω |
| 58 | | ne0i 4321 |
. . . . . . . . . . 11
⊢ (∅
∈ ω → ω ≠ ∅) |
| 59 | 57, 58 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ω ≠
∅) |
| 60 | 56, 59 | eqnetrd 3000 |
. . . . . . . . 9
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → dom 𝐺 ≠ ∅) |
| 61 | | dm0rn0 5909 |
. . . . . . . . . 10
⊢ (dom
𝐺 = ∅ ↔ ran
𝐺 =
∅) |
| 62 | 61 | necon3bii 2985 |
. . . . . . . . 9
⊢ (dom
𝐺 ≠ ∅ ↔ ran
𝐺 ≠
∅) |
| 63 | 60, 62 | sylib 218 |
. . . . . . . 8
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ran 𝐺 ≠ ∅) |
| 64 | 54, 63 | eqnetrd 3000 |
. . . . . . 7
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (dom 𝐹 ∩ ran 𝐺) ≠ ∅) |
| 65 | | imadisj 6072 |
. . . . . . . 8
⊢ ((𝐹 “ ran 𝐺) = ∅ ↔ (dom 𝐹 ∩ ran 𝐺) = ∅) |
| 66 | 65 | necon3bii 2985 |
. . . . . . 7
⊢ ((𝐹 “ ran 𝐺) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝐺) ≠ ∅) |
| 67 | 64, 66 | sylibr 234 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹 “ ran 𝐺) ≠ ∅) |
| 68 | 1 | isf34lem5 10397 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
((𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝐺) ≠ ∅)) → (𝐹‘∩ (𝐹 “ ran 𝐺)) = ∪ (𝐹 “ (𝐹 “ ran 𝐺))) |
| 69 | 45, 46, 67, 68 | syl12anc 836 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹‘∩ (𝐹
“ ran 𝐺)) = ∪ (𝐹
“ (𝐹 “ ran
𝐺))) |
| 70 | 1 | isf34lem3 10394 |
. . . . . . 7
⊢ ((𝐴 ∈ FinIII ∧
ran 𝐺 ⊆ 𝒫
𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺) |
| 71 | 45, 49, 70 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺) |
| 72 | 71 | unieqd 4901 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ∪ (𝐹
“ (𝐹 “ ran
𝐺)) = ∪ ran 𝐺) |
| 73 | 69, 72 | eqtrd 2771 |
. . . 4
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → (𝐹‘∩ (𝐹
“ ran 𝐺)) = ∪ ran 𝐺) |
| 74 | 73, 71 | eleq12d 2829 |
. . 3
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴) → ((𝐹‘∩ (𝐹
“ ran 𝐺)) ∈
(𝐹 “ (𝐹 “ ran 𝐺)) ↔ ∪ ran
𝐺 ∈ ran 𝐺)) |
| 75 | 74 | 3adant3 1132 |
. 2
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ((𝐹‘∩ (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)) ↔ ∪ ran
𝐺 ∈ ran 𝐺)) |
| 76 | 44, 75 | mpbid 232 |
1
⊢ ((𝐴 ∈ FinIII ∧
𝐺:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝐺‘𝑦) ⊆ (𝐺‘suc 𝑦)) → ∪ ran
𝐺 ∈ ran 𝐺) |