MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem7 Structured version   Visualization version   GIF version

Theorem isf34lem7 10308
Description: Lemma for isfin3-4 10311. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem7 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ran 𝐺 ∈ ran 𝐺)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐹   𝑦,𝐺
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem isf34lem7
StepHypRef Expression
1 compss.a . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
21isf34lem2 10302 . . . . . 6 (𝐴 ∈ FinIII𝐹:𝒫 𝐴⟶𝒫 𝐴)
32adantr 480 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
433adant3 1132 . . . 4 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
54ffnd 6671 . . 3 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐹 Fn 𝒫 𝐴)
6 imassrn 6031 . . . 4 (𝐹 “ ran 𝐺) ⊆ ran 𝐹
73frnd 6678 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ran 𝐹 ⊆ 𝒫 𝐴)
873adant3 1132 . . . 4 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ran 𝐹 ⊆ 𝒫 𝐴)
96, 8sstrid 3955 . . 3 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴)
10 simp1 1136 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → 𝐴 ∈ FinIII)
11 fco 6694 . . . . . . 7 ((𝐹:𝒫 𝐴⟶𝒫 𝐴𝐺:ω⟶𝒫 𝐴) → (𝐹𝐺):ω⟶𝒫 𝐴)
122, 11sylan 580 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹𝐺):ω⟶𝒫 𝐴)
13123adant3 1132 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹𝐺):ω⟶𝒫 𝐴)
14 sscon 4102 . . . . . . . 8 ((𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → (𝐴 ∖ (𝐺‘suc 𝑦)) ⊆ (𝐴 ∖ (𝐺𝑦)))
15 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → 𝐺:ω⟶𝒫 𝐴)
16 peano2 7846 . . . . . . . . . . 11 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
17 fvco3 6942 . . . . . . . . . . 11 ((𝐺:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹𝐺)‘suc 𝑦) = (𝐹‘(𝐺‘suc 𝑦)))
1815, 16, 17syl2an 596 . . . . . . . . . 10 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐹𝐺)‘suc 𝑦) = (𝐹‘(𝐺‘suc 𝑦)))
19 simpll 766 . . . . . . . . . . 11 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → 𝐴 ∈ FinIII)
20 ffvelcdm 7035 . . . . . . . . . . . . 13 ((𝐺:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ∈ 𝒫 𝐴)
2115, 16, 20syl2an 596 . . . . . . . . . . . 12 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ∈ 𝒫 𝐴)
2221elpwid 4568 . . . . . . . . . . 11 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐺‘suc 𝑦) ⊆ 𝐴)
231isf34lem1 10301 . . . . . . . . . . 11 ((𝐴 ∈ FinIII ∧ (𝐺‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝐺‘suc 𝑦)) = (𝐴 ∖ (𝐺‘suc 𝑦)))
2419, 22, 23syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐹‘(𝐺‘suc 𝑦)) = (𝐴 ∖ (𝐺‘suc 𝑦)))
2518, 24eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐹𝐺)‘suc 𝑦) = (𝐴 ∖ (𝐺‘suc 𝑦)))
26 fvco3 6942 . . . . . . . . . . 11 ((𝐺:ω⟶𝒫 𝐴𝑦 ∈ ω) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2726adantll 714 . . . . . . . . . 10 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
28 ffvelcdm 7035 . . . . . . . . . . . . 13 ((𝐺:ω⟶𝒫 𝐴𝑦 ∈ ω) → (𝐺𝑦) ∈ 𝒫 𝐴)
2928adantll 714 . . . . . . . . . . . 12 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐺𝑦) ∈ 𝒫 𝐴)
3029elpwid 4568 . . . . . . . . . . 11 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐺𝑦) ⊆ 𝐴)
311isf34lem1 10301 . . . . . . . . . . 11 ((𝐴 ∈ FinIII ∧ (𝐺𝑦) ⊆ 𝐴) → (𝐹‘(𝐺𝑦)) = (𝐴 ∖ (𝐺𝑦)))
3219, 30, 31syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (𝐹‘(𝐺𝑦)) = (𝐴 ∖ (𝐺𝑦)))
3327, 32eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐹𝐺)‘𝑦) = (𝐴 ∖ (𝐺𝑦)))
3425, 33sseq12d 3977 . . . . . . . 8 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → (((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦) ↔ (𝐴 ∖ (𝐺‘suc 𝑦)) ⊆ (𝐴 ∖ (𝐺𝑦))))
3514, 34imbitrrid 246 . . . . . . 7 (((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) ∧ 𝑦 ∈ ω) → ((𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → ((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦)))
3635ralimdva 3145 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦) → ∀𝑦 ∈ ω ((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦)))
37363impia 1117 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ∀𝑦 ∈ ω ((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦))
38 fin33i 10298 . . . . 5 ((𝐴 ∈ FinIII ∧ (𝐹𝐺):ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω ((𝐹𝐺)‘suc 𝑦) ⊆ ((𝐹𝐺)‘𝑦)) → ran (𝐹𝐺) ∈ ran (𝐹𝐺))
3910, 13, 37, 38syl3anc 1373 . . . 4 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ran (𝐹𝐺) ∈ ran (𝐹𝐺))
40 rnco2 6214 . . . . 5 ran (𝐹𝐺) = (𝐹 “ ran 𝐺)
4140inteqi 4910 . . . 4 ran (𝐹𝐺) = (𝐹 “ ran 𝐺)
4239, 41, 403eltr3g 2844 . . 3 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 “ ran 𝐺) ∈ (𝐹 “ ran 𝐺))
43 fnfvima 7189 . . 3 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴 (𝐹 “ ran 𝐺) ∈ (𝐹 “ ran 𝐺)) → (𝐹 (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)))
445, 9, 42, 43syl3anc 1373 . 2 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → (𝐹 (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)))
45 simpl 482 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → 𝐴 ∈ FinIII)
466, 7sstrid 3955 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴)
47 incom 4168 . . . . . . . . 9 (dom 𝐹 ∩ ran 𝐺) = (ran 𝐺 ∩ dom 𝐹)
48 frn 6677 . . . . . . . . . . . 12 (𝐺:ω⟶𝒫 𝐴 → ran 𝐺 ⊆ 𝒫 𝐴)
4948adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ran 𝐺 ⊆ 𝒫 𝐴)
503fdmd 6680 . . . . . . . . . . 11 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → dom 𝐹 = 𝒫 𝐴)
5149, 50sseqtrrd 3981 . . . . . . . . . 10 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ran 𝐺 ⊆ dom 𝐹)
52 dfss2 3929 . . . . . . . . . 10 (ran 𝐺 ⊆ dom 𝐹 ↔ (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
5351, 52sylib 218 . . . . . . . . 9 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (ran 𝐺 ∩ dom 𝐹) = ran 𝐺)
5447, 53eqtrid 2776 . . . . . . . 8 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (dom 𝐹 ∩ ran 𝐺) = ran 𝐺)
55 fdm 6679 . . . . . . . . . . 11 (𝐺:ω⟶𝒫 𝐴 → dom 𝐺 = ω)
5655adantl 481 . . . . . . . . . 10 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → dom 𝐺 = ω)
57 peano1 7845 . . . . . . . . . . 11 ∅ ∈ ω
58 ne0i 4300 . . . . . . . . . . 11 (∅ ∈ ω → ω ≠ ∅)
5957, 58mp1i 13 . . . . . . . . . 10 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ω ≠ ∅)
6056, 59eqnetrd 2992 . . . . . . . . 9 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → dom 𝐺 ≠ ∅)
61 dm0rn0 5878 . . . . . . . . . 10 (dom 𝐺 = ∅ ↔ ran 𝐺 = ∅)
6261necon3bii 2977 . . . . . . . . 9 (dom 𝐺 ≠ ∅ ↔ ran 𝐺 ≠ ∅)
6360, 62sylib 218 . . . . . . . 8 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ran 𝐺 ≠ ∅)
6454, 63eqnetrd 2992 . . . . . . 7 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (dom 𝐹 ∩ ran 𝐺) ≠ ∅)
65 imadisj 6040 . . . . . . . 8 ((𝐹 “ ran 𝐺) = ∅ ↔ (dom 𝐹 ∩ ran 𝐺) = ∅)
6665necon3bii 2977 . . . . . . 7 ((𝐹 “ ran 𝐺) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝐺) ≠ ∅)
6764, 66sylibr 234 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 “ ran 𝐺) ≠ ∅)
681isf34lem5 10307 . . . . . 6 ((𝐴 ∈ FinIII ∧ ((𝐹 “ ran 𝐺) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝐺) ≠ ∅)) → (𝐹 (𝐹 “ ran 𝐺)) = (𝐹 “ (𝐹 “ ran 𝐺)))
6945, 46, 67, 68syl12anc 836 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 (𝐹 “ ran 𝐺)) = (𝐹 “ (𝐹 “ ran 𝐺)))
701isf34lem3 10304 . . . . . . 7 ((𝐴 ∈ FinIII ∧ ran 𝐺 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺)
7145, 49, 70syl2anc 584 . . . . . 6 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺)
7271unieqd 4880 . . . . 5 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝐺)) = ran 𝐺)
7369, 72eqtrd 2764 . . . 4 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → (𝐹 (𝐹 “ ran 𝐺)) = ran 𝐺)
7473, 71eleq12d 2822 . . 3 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴) → ((𝐹 (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)) ↔ ran 𝐺 ∈ ran 𝐺))
75743adant3 1132 . 2 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ((𝐹 (𝐹 “ ran 𝐺)) ∈ (𝐹 “ (𝐹 “ ran 𝐺)) ↔ ran 𝐺 ∈ ran 𝐺))
7644, 75mpbid 232 1 ((𝐴 ∈ FinIII𝐺:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝐺𝑦) ⊆ (𝐺‘suc 𝑦)) → ran 𝐺 ∈ ran 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3908  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559   cuni 4867   cint 4906  cmpt 5183  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635  suc csuc 6322   Fn wfn 6494  wf 6495  cfv 6499  ωcom 7822  FinIIIcfin3 10210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-rpss 7679  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-wdom 9494  df-card 9868  df-fin4 10216  df-fin3 10217
This theorem is referenced by:  isf34lem6  10309  fin34i  10310
  Copyright terms: Public domain W3C validator