Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvallem Structured version   Visualization version   GIF version

Theorem esumpfinvallem 33763
Description: Lemma for esumpfinval 33764. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Assertion
Ref Expression
esumpfinvallem ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))

Proof of Theorem esumpfinvallem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fex 7236 . . . 4 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝐴𝑉) → 𝐹 ∈ V)
21ancoms 457 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹 ∈ V)
3 ovexd 7452 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂflds (0[,)+∞)) ∈ V)
4 ovexd 7452 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,)+∞)) ∈ V)
5 rge0ssre 13465 . . . . . . 7 (0[,)+∞) ⊆ ℝ
6 ax-resscn 11195 . . . . . . 7 ℝ ⊆ ℂ
75, 6sstri 3987 . . . . . 6 (0[,)+∞) ⊆ ℂ
8 eqid 2725 . . . . . . 7 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
9 cnfldbas 21287 . . . . . . 7 ℂ = (Base‘ℂfld)
108, 9ressbas2 17217 . . . . . 6 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
117, 10ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
12 icossxr 13441 . . . . . 6 (0[,)+∞) ⊆ ℝ*
13 eqid 2725 . . . . . . 7 (ℝ*𝑠s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞))
14 xrsbas 21315 . . . . . . 7 * = (Base‘ℝ*𝑠)
1513, 14ressbas2 17217 . . . . . 6 ((0[,)+∞) ⊆ ℝ* → (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞))))
1612, 15ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞)))
1711, 16eqtr3i 2755 . . . 4 (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞)))
1817a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞))))
19 simprl 769 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (Base‘(ℂflds (0[,)+∞))))
2019, 11eleqtrrdi 2836 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (0[,)+∞))
21 simprr 771 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))
2221, 11eleqtrrdi 2836 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (0[,)+∞))
23 ge0addcl 13469 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
24 ovex 7450 . . . . . . 7 (0[,)+∞) ∈ V
25 cnfldadd 21289 . . . . . . . 8 + = (+g‘ℂfld)
268, 25ressplusg 17270 . . . . . . 7 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
2724, 26ax-mp 5 . . . . . 6 + = (+g‘(ℂflds (0[,)+∞)))
2827oveqi 7430 . . . . 5 (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦)
2923, 28, 113eltr3g 2841 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
3020, 22, 29syl2anc 582 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
31 simpl 481 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
325, 31sselid 3975 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
33 simpr 483 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
345, 33sselid 3975 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℝ)
35 rexadd 13243 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 𝑦) = (𝑥 + 𝑦))
3635eqcomd 2731 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
3732, 34, 36syl2anc 582 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
38 xrsadd 21316 . . . . . . . 8 +𝑒 = (+g‘ℝ*𝑠)
3913, 38ressplusg 17270 . . . . . . 7 ((0[,)+∞) ∈ V → +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞))))
4024, 39ax-mp 5 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞)))
4140oveqi 7430 . . . . 5 (𝑥 +𝑒 𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦)
4237, 28, 413eqtr3g 2788 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
4320, 22, 42syl2anc 582 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
44 simpr 483 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹:𝐴⟶(0[,)+∞))
4544ffund 6725 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → Fun 𝐹)
4644frnd 6729 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (0[,)+∞))
4746, 11sseqtrdi 4028 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (Base‘(ℂflds (0[,)+∞))))
482, 3, 4, 18, 30, 43, 45, 47gsumpropd2 18639 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℂflds (0[,)+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
49 cnfldex 21286 . . . 4 fld ∈ V
5049a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ℂfld ∈ V)
51 simpl 481 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐴𝑉)
527a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ ℂ)
53 0e0icopnf 13467 . . . 4 0 ∈ (0[,)+∞)
5453a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 0 ∈ (0[,)+∞))
55 simpr 483 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
5655addlidd 11445 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
5755addridd 11444 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
5856, 57jca 510 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
599, 25, 8, 50, 51, 52, 44, 54, 58gsumress 18641 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℂflds (0[,)+∞)) Σg 𝐹))
60 xrge0base 32798 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
61 xrge0plusg 32800 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
62 ovex 7450 . . . . 5 (0[,]+∞) ∈ V
63 ressress 17228 . . . . 5 (((0[,]+∞) ∈ V ∧ (0[,)+∞) ∈ V) → ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))))
6462, 24, 63mp2an 690 . . . 4 ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞)))
65 incom 4200 . . . . . 6 ((0[,]+∞) ∩ (0[,)+∞)) = ((0[,)+∞) ∩ (0[,]+∞))
66 icossicc 13445 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
67 dfss 3964 . . . . . . 7 ((0[,)+∞) ⊆ (0[,]+∞) ↔ (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞)))
6866, 67mpbi 229 . . . . . 6 (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞))
6965, 68eqtr4i 2756 . . . . 5 ((0[,]+∞) ∩ (0[,)+∞)) = (0[,)+∞)
7069oveq2i 7428 . . . 4 (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))) = (ℝ*𝑠s (0[,)+∞))
7164, 70eqtr2i 2754 . . 3 (ℝ*𝑠s (0[,)+∞)) = ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞))
72 ovexd 7452 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,]+∞)) ∈ V)
7366a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ (0[,]+∞))
74 iccssxr 13439 . . . . . 6 (0[,]+∞) ⊆ ℝ*
75 simpr 483 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
7674, 75sselid 3975 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
77 xaddlid 13253 . . . . 5 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
7876, 77syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (0 +𝑒 𝑥) = 𝑥)
79 xaddrid 13252 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 +𝑒 0) = 𝑥)
8076, 79syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 +𝑒 0) = 𝑥)
8178, 80jca 510 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → ((0 +𝑒 𝑥) = 𝑥 ∧ (𝑥 +𝑒 0) = 𝑥))
8260, 61, 71, 72, 51, 73, 44, 54, 81gsumress 18641 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
8348, 59, 823eqtr4d 2775 1 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  cin 3944  wss 3945  ran crn 5678  wf 6543  cfv 6547  (class class class)co 7417  cc 11136  cr 11137  0cc0 11138   + caddc 11141  +∞cpnf 11275  *cxr 11277   +𝑒 cxad 13122  [,)cico 13358  [,]cicc 13359  Basecbs 17179  s cress 17208  +gcplusg 17232   Σg cgsu 17421  *𝑠cxrs 17481  fldccnfld 21283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-xadd 13125  df-ico 13362  df-icc 13363  df-fz 13517  df-seq 13999  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-0g 17422  df-gsum 17423  df-xrs 17483  df-cnfld 21284
This theorem is referenced by:  esumpfinval  33764  esumpfinvalf  33765  esumpcvgval  33767  esumcvg  33775
  Copyright terms: Public domain W3C validator