Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvallem Structured version   Visualization version   GIF version

Theorem esumpfinvallem 31942
Description: Lemma for esumpfinval 31943. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Assertion
Ref Expression
esumpfinvallem ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))

Proof of Theorem esumpfinvallem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fex 7084 . . . 4 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝐴𝑉) → 𝐹 ∈ V)
21ancoms 458 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹 ∈ V)
3 ovexd 7290 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂflds (0[,)+∞)) ∈ V)
4 ovexd 7290 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,)+∞)) ∈ V)
5 rge0ssre 13117 . . . . . . 7 (0[,)+∞) ⊆ ℝ
6 ax-resscn 10859 . . . . . . 7 ℝ ⊆ ℂ
75, 6sstri 3926 . . . . . 6 (0[,)+∞) ⊆ ℂ
8 eqid 2738 . . . . . . 7 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
9 cnfldbas 20514 . . . . . . 7 ℂ = (Base‘ℂfld)
108, 9ressbas2 16875 . . . . . 6 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
117, 10ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
12 icossxr 13093 . . . . . 6 (0[,)+∞) ⊆ ℝ*
13 eqid 2738 . . . . . . 7 (ℝ*𝑠s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞))
14 xrsbas 20526 . . . . . . 7 * = (Base‘ℝ*𝑠)
1513, 14ressbas2 16875 . . . . . 6 ((0[,)+∞) ⊆ ℝ* → (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞))))
1612, 15ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞)))
1711, 16eqtr3i 2768 . . . 4 (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞)))
1817a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞))))
19 simprl 767 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (Base‘(ℂflds (0[,)+∞))))
2019, 11eleqtrrdi 2850 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (0[,)+∞))
21 simprr 769 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))
2221, 11eleqtrrdi 2850 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (0[,)+∞))
23 ge0addcl 13121 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
24 ovex 7288 . . . . . . 7 (0[,)+∞) ∈ V
25 cnfldadd 20515 . . . . . . . 8 + = (+g‘ℂfld)
268, 25ressplusg 16926 . . . . . . 7 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
2724, 26ax-mp 5 . . . . . 6 + = (+g‘(ℂflds (0[,)+∞)))
2827oveqi 7268 . . . . 5 (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦)
2923, 28, 113eltr3g 2855 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
3020, 22, 29syl2anc 583 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
31 simpl 482 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
325, 31sselid 3915 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
33 simpr 484 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
345, 33sselid 3915 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℝ)
35 rexadd 12895 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 𝑦) = (𝑥 + 𝑦))
3635eqcomd 2744 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
3732, 34, 36syl2anc 583 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
38 xrsadd 20527 . . . . . . . 8 +𝑒 = (+g‘ℝ*𝑠)
3913, 38ressplusg 16926 . . . . . . 7 ((0[,)+∞) ∈ V → +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞))))
4024, 39ax-mp 5 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞)))
4140oveqi 7268 . . . . 5 (𝑥 +𝑒 𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦)
4237, 28, 413eqtr3g 2802 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
4320, 22, 42syl2anc 583 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
44 simpr 484 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹:𝐴⟶(0[,)+∞))
4544ffund 6588 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → Fun 𝐹)
4644frnd 6592 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (0[,)+∞))
4746, 11sseqtrdi 3967 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (Base‘(ℂflds (0[,)+∞))))
482, 3, 4, 18, 30, 43, 45, 47gsumpropd2 18279 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℂflds (0[,)+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
49 cnfldex 20513 . . . 4 fld ∈ V
5049a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ℂfld ∈ V)
51 simpl 482 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐴𝑉)
527a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ ℂ)
53 0e0icopnf 13119 . . . 4 0 ∈ (0[,)+∞)
5453a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 0 ∈ (0[,)+∞))
55 simpr 484 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
5655addid2d 11106 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
5755addid1d 11105 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
5856, 57jca 511 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
599, 25, 8, 50, 51, 52, 44, 54, 58gsumress 18281 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℂflds (0[,)+∞)) Σg 𝐹))
60 xrge0base 31196 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
61 xrge0plusg 31198 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
62 ovex 7288 . . . . 5 (0[,]+∞) ∈ V
63 ressress 16884 . . . . 5 (((0[,]+∞) ∈ V ∧ (0[,)+∞) ∈ V) → ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))))
6462, 24, 63mp2an 688 . . . 4 ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞)))
65 incom 4131 . . . . . 6 ((0[,]+∞) ∩ (0[,)+∞)) = ((0[,)+∞) ∩ (0[,]+∞))
66 icossicc 13097 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
67 dfss 3901 . . . . . . 7 ((0[,)+∞) ⊆ (0[,]+∞) ↔ (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞)))
6866, 67mpbi 229 . . . . . 6 (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞))
6965, 68eqtr4i 2769 . . . . 5 ((0[,]+∞) ∩ (0[,)+∞)) = (0[,)+∞)
7069oveq2i 7266 . . . 4 (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))) = (ℝ*𝑠s (0[,)+∞))
7164, 70eqtr2i 2767 . . 3 (ℝ*𝑠s (0[,)+∞)) = ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞))
72 ovexd 7290 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,]+∞)) ∈ V)
7366a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ (0[,]+∞))
74 iccssxr 13091 . . . . . 6 (0[,]+∞) ⊆ ℝ*
75 simpr 484 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
7674, 75sselid 3915 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
77 xaddid2 12905 . . . . 5 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
7876, 77syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (0 +𝑒 𝑥) = 𝑥)
79 xaddid1 12904 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 +𝑒 0) = 𝑥)
8076, 79syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 +𝑒 0) = 𝑥)
8178, 80jca 511 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → ((0 +𝑒 𝑥) = 𝑥 ∧ (𝑥 +𝑒 0) = 𝑥))
8260, 61, 71, 72, 51, 73, 44, 54, 81gsumress 18281 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
8348, 59, 823eqtr4d 2788 1 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937  *cxr 10939   +𝑒 cxad 12775  [,)cico 13010  [,]cicc 13011  Basecbs 16840  s cress 16867  +gcplusg 16888   Σg cgsu 17068  *𝑠cxrs 17128  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-xadd 12778  df-ico 13014  df-icc 13015  df-fz 13169  df-seq 13650  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-xrs 17130  df-cnfld 20511
This theorem is referenced by:  esumpfinval  31943  esumpfinvalf  31944  esumpcvgval  31946  esumcvg  31954
  Copyright terms: Public domain W3C validator