Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvallem Structured version   Visualization version   GIF version

Theorem esumpfinvallem 33564
Description: Lemma for esumpfinval 33565. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Assertion
Ref Expression
esumpfinvallem ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))

Proof of Theorem esumpfinvallem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fex 7220 . . . 4 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝐴𝑉) → 𝐹 ∈ V)
21ancoms 458 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹 ∈ V)
3 ovexd 7437 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂflds (0[,)+∞)) ∈ V)
4 ovexd 7437 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,)+∞)) ∈ V)
5 rge0ssre 13431 . . . . . . 7 (0[,)+∞) ⊆ ℝ
6 ax-resscn 11164 . . . . . . 7 ℝ ⊆ ℂ
75, 6sstri 3984 . . . . . 6 (0[,)+∞) ⊆ ℂ
8 eqid 2724 . . . . . . 7 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
9 cnfldbas 21234 . . . . . . 7 ℂ = (Base‘ℂfld)
108, 9ressbas2 17183 . . . . . 6 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
117, 10ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
12 icossxr 13407 . . . . . 6 (0[,)+∞) ⊆ ℝ*
13 eqid 2724 . . . . . . 7 (ℝ*𝑠s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞))
14 xrsbas 21247 . . . . . . 7 * = (Base‘ℝ*𝑠)
1513, 14ressbas2 17183 . . . . . 6 ((0[,)+∞) ⊆ ℝ* → (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞))))
1612, 15ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞)))
1711, 16eqtr3i 2754 . . . 4 (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞)))
1817a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞))))
19 simprl 768 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (Base‘(ℂflds (0[,)+∞))))
2019, 11eleqtrrdi 2836 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (0[,)+∞))
21 simprr 770 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))
2221, 11eleqtrrdi 2836 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (0[,)+∞))
23 ge0addcl 13435 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
24 ovex 7435 . . . . . . 7 (0[,)+∞) ∈ V
25 cnfldadd 21235 . . . . . . . 8 + = (+g‘ℂfld)
268, 25ressplusg 17236 . . . . . . 7 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
2724, 26ax-mp 5 . . . . . 6 + = (+g‘(ℂflds (0[,)+∞)))
2827oveqi 7415 . . . . 5 (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦)
2923, 28, 113eltr3g 2841 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
3020, 22, 29syl2anc 583 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
31 simpl 482 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
325, 31sselid 3973 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
33 simpr 484 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
345, 33sselid 3973 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℝ)
35 rexadd 13209 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 𝑦) = (𝑥 + 𝑦))
3635eqcomd 2730 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
3732, 34, 36syl2anc 583 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
38 xrsadd 21248 . . . . . . . 8 +𝑒 = (+g‘ℝ*𝑠)
3913, 38ressplusg 17236 . . . . . . 7 ((0[,)+∞) ∈ V → +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞))))
4024, 39ax-mp 5 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞)))
4140oveqi 7415 . . . . 5 (𝑥 +𝑒 𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦)
4237, 28, 413eqtr3g 2787 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
4320, 22, 42syl2anc 583 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
44 simpr 484 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹:𝐴⟶(0[,)+∞))
4544ffund 6712 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → Fun 𝐹)
4644frnd 6716 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (0[,)+∞))
4746, 11sseqtrdi 4025 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (Base‘(ℂflds (0[,)+∞))))
482, 3, 4, 18, 30, 43, 45, 47gsumpropd2 18605 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℂflds (0[,)+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
49 cnfldex 21233 . . . 4 fld ∈ V
5049a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ℂfld ∈ V)
51 simpl 482 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐴𝑉)
527a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ ℂ)
53 0e0icopnf 13433 . . . 4 0 ∈ (0[,)+∞)
5453a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 0 ∈ (0[,)+∞))
55 simpr 484 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
5655addlidd 11413 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
5755addridd 11412 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
5856, 57jca 511 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
599, 25, 8, 50, 51, 52, 44, 54, 58gsumress 18607 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℂflds (0[,)+∞)) Σg 𝐹))
60 xrge0base 32654 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
61 xrge0plusg 32656 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
62 ovex 7435 . . . . 5 (0[,]+∞) ∈ V
63 ressress 17194 . . . . 5 (((0[,]+∞) ∈ V ∧ (0[,)+∞) ∈ V) → ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))))
6462, 24, 63mp2an 689 . . . 4 ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞)))
65 incom 4194 . . . . . 6 ((0[,]+∞) ∩ (0[,)+∞)) = ((0[,)+∞) ∩ (0[,]+∞))
66 icossicc 13411 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
67 dfss 3959 . . . . . . 7 ((0[,)+∞) ⊆ (0[,]+∞) ↔ (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞)))
6866, 67mpbi 229 . . . . . 6 (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞))
6965, 68eqtr4i 2755 . . . . 5 ((0[,]+∞) ∩ (0[,)+∞)) = (0[,)+∞)
7069oveq2i 7413 . . . 4 (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))) = (ℝ*𝑠s (0[,)+∞))
7164, 70eqtr2i 2753 . . 3 (ℝ*𝑠s (0[,)+∞)) = ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞))
72 ovexd 7437 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,]+∞)) ∈ V)
7366a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ (0[,]+∞))
74 iccssxr 13405 . . . . . 6 (0[,]+∞) ⊆ ℝ*
75 simpr 484 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
7674, 75sselid 3973 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
77 xaddlid 13219 . . . . 5 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
7876, 77syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (0 +𝑒 𝑥) = 𝑥)
79 xaddrid 13218 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 +𝑒 0) = 𝑥)
8076, 79syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 +𝑒 0) = 𝑥)
8178, 80jca 511 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → ((0 +𝑒 𝑥) = 𝑥 ∧ (𝑥 +𝑒 0) = 𝑥))
8260, 61, 71, 72, 51, 73, 44, 54, 81gsumress 18607 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
8348, 59, 823eqtr4d 2774 1 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cin 3940  wss 3941  ran crn 5668  wf 6530  cfv 6534  (class class class)co 7402  cc 11105  cr 11106  0cc0 11107   + caddc 11110  +∞cpnf 11243  *cxr 11245   +𝑒 cxad 13088  [,)cico 13324  [,]cicc 13325  Basecbs 17145  s cress 17174  +gcplusg 17198   Σg cgsu 17387  *𝑠cxrs 17447  fldccnfld 21230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-addf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-xadd 13091  df-ico 13328  df-icc 13329  df-fz 13483  df-seq 13965  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-0g 17388  df-gsum 17389  df-xrs 17449  df-cnfld 21231
This theorem is referenced by:  esumpfinval  33565  esumpfinvalf  33566  esumpcvgval  33568  esumcvg  33576
  Copyright terms: Public domain W3C validator