Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0mulc1cn Structured version   Visualization version   GIF version

Theorem xrge0mulc1cn 31455
Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
xrge0mulc1cn.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0mulc1cn.f 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
xrge0mulc1cn.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
xrge0mulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem xrge0mulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xrge0mulc1cn.k . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 letopon 21949 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
3 iccssxr 12897 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
4 resttopon 21905 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
52, 3, 4mp2an 692 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
61, 5eqeltri 2829 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
76a1i 11 . . . 4 (𝐶 = 0 → 𝐽 ∈ (TopOn‘(0[,]+∞)))
8 0e0iccpnf 12926 . . . . 5 0 ∈ (0[,]+∞)
98a1i 11 . . . 4 (𝐶 = 0 → 0 ∈ (0[,]+∞))
10 simpl 486 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝐶 = 0)
1110oveq2d 7180 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = (𝑥 ·e 0))
12 simpr 488 . . . . . . . . . 10 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
133, 12sseldi 3873 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
14 xmul01 12736 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑥 ·e 0) = 0)
1513, 14syl 17 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 0) = 0)
1611, 15eqtrd 2773 . . . . . . 7 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = 0)
1716mpteq2dva 5122 . . . . . 6 (𝐶 = 0 → (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)) = (𝑥 ∈ (0[,]+∞) ↦ 0))
18 xrge0mulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
19 fconstmpt 5579 . . . . . 6 ((0[,]+∞) × {0}) = (𝑥 ∈ (0[,]+∞) ↦ 0)
2017, 18, 193eqtr4g 2798 . . . . 5 (𝐶 = 0 → 𝐹 = ((0[,]+∞) × {0}))
21 c0ex 10706 . . . . . 6 0 ∈ V
2221fconst2 6971 . . . . 5 (𝐹:(0[,]+∞)⟶{0} ↔ 𝐹 = ((0[,]+∞) × {0}))
2320, 22sylibr 237 . . . 4 (𝐶 = 0 → 𝐹:(0[,]+∞)⟶{0})
24 cnconst 22028 . . . 4 (((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ 𝐽 ∈ (TopOn‘(0[,]+∞))) ∧ (0 ∈ (0[,]+∞) ∧ 𝐹:(0[,]+∞)⟶{0})) → 𝐹 ∈ (𝐽 Cn 𝐽))
257, 7, 9, 23, 24syl22anc 838 . . 3 (𝐶 = 0 → 𝐹 ∈ (𝐽 Cn 𝐽))
2625adantl 485 . 2 ((𝜑𝐶 = 0) → 𝐹 ∈ (𝐽 Cn 𝐽))
27 eqid 2738 . . . . . . . . 9 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
28 oveq1 7171 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
2928cbvmptv 5130 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) = (𝑦 ∈ ℝ* ↦ (𝑦 ·e 𝐶))
30 id 22 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ∈ ℝ+)
3127, 29, 30xrmulc1cn 31444 . . . . . . . 8 (𝐶 ∈ ℝ+ → (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
32 letopuni 21951 . . . . . . . . 9 * = (ordTop‘ ≤ )
3332cnrest 22029 . . . . . . . 8 (((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )) ∧ (0[,]+∞) ⊆ ℝ*) → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
3431, 3, 33sylancl 589 . . . . . . 7 (𝐶 ∈ ℝ+ → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
35 resmpt 5873 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)))
363, 35ax-mp 5 . . . . . . . 8 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
3736, 18eqtr4i 2764 . . . . . . 7 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = 𝐹
381eqcomi 2747 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = 𝐽
3938oveq1i 7174 . . . . . . 7 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )) = (𝐽 Cn (ordTop‘ ≤ ))
4034, 37, 393eltr3g 2849 . . . . . 6 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )))
412a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
42 simpr 488 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
43 ioorp 12892 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
44 ioossicc 12900 . . . . . . . . . . . 12 (0(,)+∞) ⊆ (0[,]+∞)
4543, 44eqsstrri 3910 . . . . . . . . . . 11 + ⊆ (0[,]+∞)
46 simpl 486 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ+)
4745, 46sseldi 3873 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
48 ge0xmulcl 12930 . . . . . . . . . 10 ((𝑥 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
4942, 47, 48syl2anc 587 . . . . . . . . 9 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
5049, 18fmptd 6882 . . . . . . . 8 (𝐶 ∈ ℝ+𝐹:(0[,]+∞)⟶(0[,]+∞))
5150frnd 6506 . . . . . . 7 (𝐶 ∈ ℝ+ → ran 𝐹 ⊆ (0[,]+∞))
523a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (0[,]+∞) ⊆ ℝ*)
53 cnrest2 22030 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ (0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5441, 51, 52, 53syl3anc 1372 . . . . . 6 (𝐶 ∈ ℝ+ → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5540, 54mpbid 235 . . . . 5 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
561oveq2i 7175 . . . . 5 (𝐽 Cn 𝐽) = (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
5755, 56eleqtrrdi 2844 . . . 4 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn 𝐽))
5857, 43eleq2s 2851 . . 3 (𝐶 ∈ (0(,)+∞) → 𝐹 ∈ (𝐽 Cn 𝐽))
5958adantl 485 . 2 ((𝜑𝐶 ∈ (0(,)+∞)) → 𝐹 ∈ (𝐽 Cn 𝐽))
60 xrge0mulc1cn.c . . 3 (𝜑𝐶 ∈ (0[,)+∞))
61 0xr 10759 . . . 4 0 ∈ ℝ*
62 pnfxr 10766 . . . 4 +∞ ∈ ℝ*
63 0ltpnf 12593 . . . 4 0 < +∞
64 elicoelioo 30666 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞))))
6561, 62, 63, 64mp3an 1462 . . 3 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6660, 65sylib 221 . 2 (𝜑 → (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6726, 59, 66mpjaodan 958 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2113  wss 3841  {csn 4513   class class class wbr 5027  cmpt 5107   × cxp 5517  ran crn 5520  cres 5521  wf 6329  cfv 6333  (class class class)co 7164  0cc0 10608  +∞cpnf 10743  *cxr 10745   < clt 10746  cle 10747  +crp 12465   ·e cxmu 12582  (,)cioo 12814  [,)cico 12816  [,]cicc 12817  t crest 16790  ordTopcordt 16868  TopOnctopon 21654   Cn ccn 21968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-1o 8124  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fi 8941  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-rp 12466  df-xneg 12583  df-xmul 12585  df-ioo 12818  df-ico 12820  df-icc 12821  df-rest 16792  df-topgen 16813  df-ordt 16870  df-ps 17919  df-tsr 17920  df-top 21638  df-topon 21655  df-bases 21690  df-cn 21971  df-cnp 21972
This theorem is referenced by:  esummulc1  31611
  Copyright terms: Public domain W3C validator