Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0mulc1cn Structured version   Visualization version   GIF version

Theorem xrge0mulc1cn 33938
Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
xrge0mulc1cn.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0mulc1cn.f 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
xrge0mulc1cn.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
xrge0mulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem xrge0mulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xrge0mulc1cn.k . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 letopon 23099 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
3 iccssxr 13398 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
4 resttopon 23055 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
52, 3, 4mp2an 692 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
61, 5eqeltri 2825 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
76a1i 11 . . . 4 (𝐶 = 0 → 𝐽 ∈ (TopOn‘(0[,]+∞)))
8 0e0iccpnf 13427 . . . . 5 0 ∈ (0[,]+∞)
98a1i 11 . . . 4 (𝐶 = 0 → 0 ∈ (0[,]+∞))
10 simpl 482 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝐶 = 0)
1110oveq2d 7406 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = (𝑥 ·e 0))
12 simpr 484 . . . . . . . . . 10 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
133, 12sselid 3947 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
14 xmul01 13234 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑥 ·e 0) = 0)
1513, 14syl 17 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 0) = 0)
1611, 15eqtrd 2765 . . . . . . 7 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = 0)
1716mpteq2dva 5203 . . . . . 6 (𝐶 = 0 → (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)) = (𝑥 ∈ (0[,]+∞) ↦ 0))
18 xrge0mulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
19 fconstmpt 5703 . . . . . 6 ((0[,]+∞) × {0}) = (𝑥 ∈ (0[,]+∞) ↦ 0)
2017, 18, 193eqtr4g 2790 . . . . 5 (𝐶 = 0 → 𝐹 = ((0[,]+∞) × {0}))
21 c0ex 11175 . . . . . 6 0 ∈ V
2221fconst2 7182 . . . . 5 (𝐹:(0[,]+∞)⟶{0} ↔ 𝐹 = ((0[,]+∞) × {0}))
2320, 22sylibr 234 . . . 4 (𝐶 = 0 → 𝐹:(0[,]+∞)⟶{0})
24 cnconst 23178 . . . 4 (((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ 𝐽 ∈ (TopOn‘(0[,]+∞))) ∧ (0 ∈ (0[,]+∞) ∧ 𝐹:(0[,]+∞)⟶{0})) → 𝐹 ∈ (𝐽 Cn 𝐽))
257, 7, 9, 23, 24syl22anc 838 . . 3 (𝐶 = 0 → 𝐹 ∈ (𝐽 Cn 𝐽))
2625adantl 481 . 2 ((𝜑𝐶 = 0) → 𝐹 ∈ (𝐽 Cn 𝐽))
27 eqid 2730 . . . . . . . . 9 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
28 oveq1 7397 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
2928cbvmptv 5214 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) = (𝑦 ∈ ℝ* ↦ (𝑦 ·e 𝐶))
30 id 22 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ∈ ℝ+)
3127, 29, 30xrmulc1cn 33927 . . . . . . . 8 (𝐶 ∈ ℝ+ → (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
32 letopuni 23101 . . . . . . . . 9 * = (ordTop‘ ≤ )
3332cnrest 23179 . . . . . . . 8 (((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )) ∧ (0[,]+∞) ⊆ ℝ*) → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
3431, 3, 33sylancl 586 . . . . . . 7 (𝐶 ∈ ℝ+ → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
35 resmpt 6011 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)))
363, 35ax-mp 5 . . . . . . . 8 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
3736, 18eqtr4i 2756 . . . . . . 7 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = 𝐹
381eqcomi 2739 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = 𝐽
3938oveq1i 7400 . . . . . . 7 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )) = (𝐽 Cn (ordTop‘ ≤ ))
4034, 37, 393eltr3g 2845 . . . . . 6 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )))
412a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
42 simpr 484 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
43 ioorp 13393 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
44 ioossicc 13401 . . . . . . . . . . . 12 (0(,)+∞) ⊆ (0[,]+∞)
4543, 44eqsstrri 3997 . . . . . . . . . . 11 + ⊆ (0[,]+∞)
46 simpl 482 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ+)
4745, 46sselid 3947 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
48 ge0xmulcl 13431 . . . . . . . . . 10 ((𝑥 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
4942, 47, 48syl2anc 584 . . . . . . . . 9 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
5049, 18fmptd 7089 . . . . . . . 8 (𝐶 ∈ ℝ+𝐹:(0[,]+∞)⟶(0[,]+∞))
5150frnd 6699 . . . . . . 7 (𝐶 ∈ ℝ+ → ran 𝐹 ⊆ (0[,]+∞))
523a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (0[,]+∞) ⊆ ℝ*)
53 cnrest2 23180 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ (0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5441, 51, 52, 53syl3anc 1373 . . . . . 6 (𝐶 ∈ ℝ+ → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5540, 54mpbid 232 . . . . 5 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
561oveq2i 7401 . . . . 5 (𝐽 Cn 𝐽) = (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
5755, 56eleqtrrdi 2840 . . . 4 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn 𝐽))
5857, 43eleq2s 2847 . . 3 (𝐶 ∈ (0(,)+∞) → 𝐹 ∈ (𝐽 Cn 𝐽))
5958adantl 481 . 2 ((𝜑𝐶 ∈ (0(,)+∞)) → 𝐹 ∈ (𝐽 Cn 𝐽))
60 xrge0mulc1cn.c . . 3 (𝜑𝐶 ∈ (0[,)+∞))
61 0xr 11228 . . . 4 0 ∈ ℝ*
62 pnfxr 11235 . . . 4 +∞ ∈ ℝ*
63 0ltpnf 13089 . . . 4 0 < +∞
64 elicoelioo 32708 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞))))
6561, 62, 63, 64mp3an 1463 . . 3 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6660, 65sylib 218 . 2 (𝜑 → (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6726, 59, 66mpjaodan 960 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  +crp 12958   ·e cxmu 13078  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  t crest 17390  ordTopcordt 17469  TopOnctopon 22804   Cn ccn 23118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-rp 12959  df-xneg 13079  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-rest 17392  df-topgen 17413  df-ordt 17471  df-ps 18532  df-tsr 18533  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121  df-cnp 23122
This theorem is referenced by:  esummulc1  34078
  Copyright terms: Public domain W3C validator