Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0mulc1cn Structured version   Visualization version   GIF version

Theorem xrge0mulc1cn 33972
Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
xrge0mulc1cn.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0mulc1cn.f 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
xrge0mulc1cn.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
xrge0mulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem xrge0mulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xrge0mulc1cn.k . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 letopon 23143 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
3 iccssxr 13447 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
4 resttopon 23099 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
52, 3, 4mp2an 692 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
61, 5eqeltri 2830 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
76a1i 11 . . . 4 (𝐶 = 0 → 𝐽 ∈ (TopOn‘(0[,]+∞)))
8 0e0iccpnf 13476 . . . . 5 0 ∈ (0[,]+∞)
98a1i 11 . . . 4 (𝐶 = 0 → 0 ∈ (0[,]+∞))
10 simpl 482 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝐶 = 0)
1110oveq2d 7421 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = (𝑥 ·e 0))
12 simpr 484 . . . . . . . . . 10 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
133, 12sselid 3956 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
14 xmul01 13283 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑥 ·e 0) = 0)
1513, 14syl 17 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 0) = 0)
1611, 15eqtrd 2770 . . . . . . 7 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = 0)
1716mpteq2dva 5214 . . . . . 6 (𝐶 = 0 → (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)) = (𝑥 ∈ (0[,]+∞) ↦ 0))
18 xrge0mulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
19 fconstmpt 5716 . . . . . 6 ((0[,]+∞) × {0}) = (𝑥 ∈ (0[,]+∞) ↦ 0)
2017, 18, 193eqtr4g 2795 . . . . 5 (𝐶 = 0 → 𝐹 = ((0[,]+∞) × {0}))
21 c0ex 11229 . . . . . 6 0 ∈ V
2221fconst2 7197 . . . . 5 (𝐹:(0[,]+∞)⟶{0} ↔ 𝐹 = ((0[,]+∞) × {0}))
2320, 22sylibr 234 . . . 4 (𝐶 = 0 → 𝐹:(0[,]+∞)⟶{0})
24 cnconst 23222 . . . 4 (((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ 𝐽 ∈ (TopOn‘(0[,]+∞))) ∧ (0 ∈ (0[,]+∞) ∧ 𝐹:(0[,]+∞)⟶{0})) → 𝐹 ∈ (𝐽 Cn 𝐽))
257, 7, 9, 23, 24syl22anc 838 . . 3 (𝐶 = 0 → 𝐹 ∈ (𝐽 Cn 𝐽))
2625adantl 481 . 2 ((𝜑𝐶 = 0) → 𝐹 ∈ (𝐽 Cn 𝐽))
27 eqid 2735 . . . . . . . . 9 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
28 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
2928cbvmptv 5225 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) = (𝑦 ∈ ℝ* ↦ (𝑦 ·e 𝐶))
30 id 22 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ∈ ℝ+)
3127, 29, 30xrmulc1cn 33961 . . . . . . . 8 (𝐶 ∈ ℝ+ → (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
32 letopuni 23145 . . . . . . . . 9 * = (ordTop‘ ≤ )
3332cnrest 23223 . . . . . . . 8 (((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )) ∧ (0[,]+∞) ⊆ ℝ*) → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
3431, 3, 33sylancl 586 . . . . . . 7 (𝐶 ∈ ℝ+ → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
35 resmpt 6024 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)))
363, 35ax-mp 5 . . . . . . . 8 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
3736, 18eqtr4i 2761 . . . . . . 7 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = 𝐹
381eqcomi 2744 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = 𝐽
3938oveq1i 7415 . . . . . . 7 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )) = (𝐽 Cn (ordTop‘ ≤ ))
4034, 37, 393eltr3g 2850 . . . . . 6 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )))
412a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
42 simpr 484 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
43 ioorp 13442 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
44 ioossicc 13450 . . . . . . . . . . . 12 (0(,)+∞) ⊆ (0[,]+∞)
4543, 44eqsstrri 4006 . . . . . . . . . . 11 + ⊆ (0[,]+∞)
46 simpl 482 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ+)
4745, 46sselid 3956 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
48 ge0xmulcl 13480 . . . . . . . . . 10 ((𝑥 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
4942, 47, 48syl2anc 584 . . . . . . . . 9 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
5049, 18fmptd 7104 . . . . . . . 8 (𝐶 ∈ ℝ+𝐹:(0[,]+∞)⟶(0[,]+∞))
5150frnd 6714 . . . . . . 7 (𝐶 ∈ ℝ+ → ran 𝐹 ⊆ (0[,]+∞))
523a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (0[,]+∞) ⊆ ℝ*)
53 cnrest2 23224 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ (0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5441, 51, 52, 53syl3anc 1373 . . . . . 6 (𝐶 ∈ ℝ+ → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5540, 54mpbid 232 . . . . 5 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
561oveq2i 7416 . . . . 5 (𝐽 Cn 𝐽) = (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
5755, 56eleqtrrdi 2845 . . . 4 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn 𝐽))
5857, 43eleq2s 2852 . . 3 (𝐶 ∈ (0(,)+∞) → 𝐹 ∈ (𝐽 Cn 𝐽))
5958adantl 481 . 2 ((𝜑𝐶 ∈ (0(,)+∞)) → 𝐹 ∈ (𝐽 Cn 𝐽))
60 xrge0mulc1cn.c . . 3 (𝜑𝐶 ∈ (0[,)+∞))
61 0xr 11282 . . . 4 0 ∈ ℝ*
62 pnfxr 11289 . . . 4 +∞ ∈ ℝ*
63 0ltpnf 13138 . . . 4 0 < +∞
64 elicoelioo 32755 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞))))
6561, 62, 63, 64mp3an 1463 . . 3 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6660, 65sylib 218 . 2 (𝜑 → (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6726, 59, 66mpjaodan 960 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wss 3926  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  ran crn 5655  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  +crp 13008   ·e cxmu 13127  (,)cioo 13362  [,)cico 13364  [,]cicc 13365  t crest 17434  ordTopcordt 17513  TopOnctopon 22848   Cn ccn 23162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-rp 13009  df-xneg 13128  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-rest 17436  df-topgen 17457  df-ordt 17515  df-ps 18576  df-tsr 18577  df-top 22832  df-topon 22849  df-bases 22884  df-cn 23165  df-cnp 23166
This theorem is referenced by:  esummulc1  34112
  Copyright terms: Public domain W3C validator