Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0mulc1cn Structured version   Visualization version   GIF version

Theorem xrge0mulc1cn 31294
Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
xrge0mulc1cn.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0mulc1cn.f 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
xrge0mulc1cn.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
xrge0mulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem xrge0mulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xrge0mulc1cn.k . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 letopon 21810 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
3 iccssxr 12808 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
4 resttopon 21766 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
52, 3, 4mp2an 691 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
61, 5eqeltri 2886 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
76a1i 11 . . . 4 (𝐶 = 0 → 𝐽 ∈ (TopOn‘(0[,]+∞)))
8 0e0iccpnf 12837 . . . . 5 0 ∈ (0[,]+∞)
98a1i 11 . . . 4 (𝐶 = 0 → 0 ∈ (0[,]+∞))
10 simpl 486 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝐶 = 0)
1110oveq2d 7151 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = (𝑥 ·e 0))
12 simpr 488 . . . . . . . . . 10 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
133, 12sseldi 3913 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
14 xmul01 12648 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑥 ·e 0) = 0)
1513, 14syl 17 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 0) = 0)
1611, 15eqtrd 2833 . . . . . . 7 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = 0)
1716mpteq2dva 5125 . . . . . 6 (𝐶 = 0 → (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)) = (𝑥 ∈ (0[,]+∞) ↦ 0))
18 xrge0mulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
19 fconstmpt 5578 . . . . . 6 ((0[,]+∞) × {0}) = (𝑥 ∈ (0[,]+∞) ↦ 0)
2017, 18, 193eqtr4g 2858 . . . . 5 (𝐶 = 0 → 𝐹 = ((0[,]+∞) × {0}))
21 c0ex 10624 . . . . . 6 0 ∈ V
2221fconst2 6944 . . . . 5 (𝐹:(0[,]+∞)⟶{0} ↔ 𝐹 = ((0[,]+∞) × {0}))
2320, 22sylibr 237 . . . 4 (𝐶 = 0 → 𝐹:(0[,]+∞)⟶{0})
24 cnconst 21889 . . . 4 (((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ 𝐽 ∈ (TopOn‘(0[,]+∞))) ∧ (0 ∈ (0[,]+∞) ∧ 𝐹:(0[,]+∞)⟶{0})) → 𝐹 ∈ (𝐽 Cn 𝐽))
257, 7, 9, 23, 24syl22anc 837 . . 3 (𝐶 = 0 → 𝐹 ∈ (𝐽 Cn 𝐽))
2625adantl 485 . 2 ((𝜑𝐶 = 0) → 𝐹 ∈ (𝐽 Cn 𝐽))
27 eqid 2798 . . . . . . . . 9 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
28 oveq1 7142 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
2928cbvmptv 5133 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) = (𝑦 ∈ ℝ* ↦ (𝑦 ·e 𝐶))
30 id 22 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ∈ ℝ+)
3127, 29, 30xrmulc1cn 31283 . . . . . . . 8 (𝐶 ∈ ℝ+ → (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
32 letopuni 21812 . . . . . . . . 9 * = (ordTop‘ ≤ )
3332cnrest 21890 . . . . . . . 8 (((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )) ∧ (0[,]+∞) ⊆ ℝ*) → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
3431, 3, 33sylancl 589 . . . . . . 7 (𝐶 ∈ ℝ+ → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
35 resmpt 5872 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)))
363, 35ax-mp 5 . . . . . . . 8 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
3736, 18eqtr4i 2824 . . . . . . 7 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = 𝐹
381eqcomi 2807 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = 𝐽
3938oveq1i 7145 . . . . . . 7 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )) = (𝐽 Cn (ordTop‘ ≤ ))
4034, 37, 393eltr3g 2906 . . . . . 6 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )))
412a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
42 simpr 488 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
43 ioorp 12803 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
44 ioossicc 12811 . . . . . . . . . . . 12 (0(,)+∞) ⊆ (0[,]+∞)
4543, 44eqsstrri 3950 . . . . . . . . . . 11 + ⊆ (0[,]+∞)
46 simpl 486 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ+)
4745, 46sseldi 3913 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
48 ge0xmulcl 12841 . . . . . . . . . 10 ((𝑥 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
4942, 47, 48syl2anc 587 . . . . . . . . 9 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
5049, 18fmptd 6855 . . . . . . . 8 (𝐶 ∈ ℝ+𝐹:(0[,]+∞)⟶(0[,]+∞))
5150frnd 6494 . . . . . . 7 (𝐶 ∈ ℝ+ → ran 𝐹 ⊆ (0[,]+∞))
523a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (0[,]+∞) ⊆ ℝ*)
53 cnrest2 21891 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ (0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5441, 51, 52, 53syl3anc 1368 . . . . . 6 (𝐶 ∈ ℝ+ → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5540, 54mpbid 235 . . . . 5 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
561oveq2i 7146 . . . . 5 (𝐽 Cn 𝐽) = (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
5755, 56eleqtrrdi 2901 . . . 4 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn 𝐽))
5857, 43eleq2s 2908 . . 3 (𝐶 ∈ (0(,)+∞) → 𝐹 ∈ (𝐽 Cn 𝐽))
5958adantl 485 . 2 ((𝜑𝐶 ∈ (0(,)+∞)) → 𝐹 ∈ (𝐽 Cn 𝐽))
60 xrge0mulc1cn.c . . 3 (𝜑𝐶 ∈ (0[,)+∞))
61 0xr 10677 . . . 4 0 ∈ ℝ*
62 pnfxr 10684 . . . 4 +∞ ∈ ℝ*
63 0ltpnf 12505 . . . 4 0 < +∞
64 elicoelioo 30527 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞))))
6561, 62, 63, 64mp3an 1458 . . 3 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6660, 65sylib 221 . 2 (𝜑 → (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6726, 59, 66mpjaodan 956 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  +crp 12377   ·e cxmu 12494  (,)cioo 12726  [,)cico 12728  [,]cicc 12729  t crest 16686  ordTopcordt 16764  TopOnctopon 21515   Cn ccn 21829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-rp 12378  df-xneg 12495  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-rest 16688  df-topgen 16709  df-ordt 16766  df-ps 17802  df-tsr 17803  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-cnp 21833
This theorem is referenced by:  esummulc1  31450
  Copyright terms: Public domain W3C validator