Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0mulc1cn Structured version   Visualization version   GIF version

Theorem xrge0mulc1cn 33901
Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
xrge0mulc1cn.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0mulc1cn.f 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
xrge0mulc1cn.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
xrge0mulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem xrge0mulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xrge0mulc1cn.k . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 letopon 23228 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
3 iccssxr 13466 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
4 resttopon 23184 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
52, 3, 4mp2an 692 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
61, 5eqeltri 2834 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
76a1i 11 . . . 4 (𝐶 = 0 → 𝐽 ∈ (TopOn‘(0[,]+∞)))
8 0e0iccpnf 13495 . . . . 5 0 ∈ (0[,]+∞)
98a1i 11 . . . 4 (𝐶 = 0 → 0 ∈ (0[,]+∞))
10 simpl 482 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝐶 = 0)
1110oveq2d 7446 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = (𝑥 ·e 0))
12 simpr 484 . . . . . . . . . 10 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
133, 12sselid 3992 . . . . . . . . 9 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
14 xmul01 13305 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑥 ·e 0) = 0)
1513, 14syl 17 . . . . . . . 8 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 0) = 0)
1611, 15eqtrd 2774 . . . . . . 7 ((𝐶 = 0 ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) = 0)
1716mpteq2dva 5247 . . . . . 6 (𝐶 = 0 → (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)) = (𝑥 ∈ (0[,]+∞) ↦ 0))
18 xrge0mulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
19 fconstmpt 5750 . . . . . 6 ((0[,]+∞) × {0}) = (𝑥 ∈ (0[,]+∞) ↦ 0)
2017, 18, 193eqtr4g 2799 . . . . 5 (𝐶 = 0 → 𝐹 = ((0[,]+∞) × {0}))
21 c0ex 11252 . . . . . 6 0 ∈ V
2221fconst2 7224 . . . . 5 (𝐹:(0[,]+∞)⟶{0} ↔ 𝐹 = ((0[,]+∞) × {0}))
2320, 22sylibr 234 . . . 4 (𝐶 = 0 → 𝐹:(0[,]+∞)⟶{0})
24 cnconst 23307 . . . 4 (((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ 𝐽 ∈ (TopOn‘(0[,]+∞))) ∧ (0 ∈ (0[,]+∞) ∧ 𝐹:(0[,]+∞)⟶{0})) → 𝐹 ∈ (𝐽 Cn 𝐽))
257, 7, 9, 23, 24syl22anc 839 . . 3 (𝐶 = 0 → 𝐹 ∈ (𝐽 Cn 𝐽))
2625adantl 481 . 2 ((𝜑𝐶 = 0) → 𝐹 ∈ (𝐽 Cn 𝐽))
27 eqid 2734 . . . . . . . . 9 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
28 oveq1 7437 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
2928cbvmptv 5260 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) = (𝑦 ∈ ℝ* ↦ (𝑦 ·e 𝐶))
30 id 22 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ∈ ℝ+)
3127, 29, 30xrmulc1cn 33890 . . . . . . . 8 (𝐶 ∈ ℝ+ → (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
32 letopuni 23230 . . . . . . . . 9 * = (ordTop‘ ≤ )
3332cnrest 23308 . . . . . . . 8 (((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )) ∧ (0[,]+∞) ⊆ ℝ*) → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
3431, 3, 33sylancl 586 . . . . . . 7 (𝐶 ∈ ℝ+ → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )))
35 resmpt 6056 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶)))
363, 35ax-mp 5 . . . . . . . 8 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = (𝑥 ∈ (0[,]+∞) ↦ (𝑥 ·e 𝐶))
3736, 18eqtr4i 2765 . . . . . . 7 ((𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) ↾ (0[,]+∞)) = 𝐹
381eqcomi 2743 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = 𝐽
3938oveq1i 7440 . . . . . . 7 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn (ordTop‘ ≤ )) = (𝐽 Cn (ordTop‘ ≤ ))
4034, 37, 393eltr3g 2854 . . . . . 6 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )))
412a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
42 simpr 484 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
43 ioorp 13461 . . . . . . . . . . . 12 (0(,)+∞) = ℝ+
44 ioossicc 13469 . . . . . . . . . . . 12 (0(,)+∞) ⊆ (0[,]+∞)
4543, 44eqsstrri 4030 . . . . . . . . . . 11 + ⊆ (0[,]+∞)
46 simpl 482 . . . . . . . . . . 11 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ+)
4745, 46sselid 3992 . . . . . . . . . 10 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
48 ge0xmulcl 13499 . . . . . . . . . 10 ((𝑥 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
4942, 47, 48syl2anc 584 . . . . . . . . 9 ((𝐶 ∈ ℝ+𝑥 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ (0[,]+∞))
5049, 18fmptd 7133 . . . . . . . 8 (𝐶 ∈ ℝ+𝐹:(0[,]+∞)⟶(0[,]+∞))
5150frnd 6744 . . . . . . 7 (𝐶 ∈ ℝ+ → ran 𝐹 ⊆ (0[,]+∞))
523a1i 11 . . . . . . 7 (𝐶 ∈ ℝ+ → (0[,]+∞) ⊆ ℝ*)
53 cnrest2 23309 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ (0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5441, 51, 52, 53syl3anc 1370 . . . . . 6 (𝐶 ∈ ℝ+ → (𝐹 ∈ (𝐽 Cn (ordTop‘ ≤ )) ↔ 𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))))
5540, 54mpbid 232 . . . . 5 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
561oveq2i 7441 . . . . 5 (𝐽 Cn 𝐽) = (𝐽 Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
5755, 56eleqtrrdi 2849 . . . 4 (𝐶 ∈ ℝ+𝐹 ∈ (𝐽 Cn 𝐽))
5857, 43eleq2s 2856 . . 3 (𝐶 ∈ (0(,)+∞) → 𝐹 ∈ (𝐽 Cn 𝐽))
5958adantl 481 . 2 ((𝜑𝐶 ∈ (0(,)+∞)) → 𝐹 ∈ (𝐽 Cn 𝐽))
60 xrge0mulc1cn.c . . 3 (𝜑𝐶 ∈ (0[,)+∞))
61 0xr 11305 . . . 4 0 ∈ ℝ*
62 pnfxr 11312 . . . 4 +∞ ∈ ℝ*
63 0ltpnf 13161 . . . 4 0 < +∞
64 elicoelioo 32786 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞))))
6561, 62, 63, 64mp3an 1460 . . 3 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6660, 65sylib 218 . 2 (𝜑 → (𝐶 = 0 ∨ 𝐶 ∈ (0(,)+∞)))
6726, 59, 66mpjaodan 960 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wss 3962  {csn 4630   class class class wbr 5147  cmpt 5230   × cxp 5686  ran crn 5689  cres 5690  wf 6558  cfv 6562  (class class class)co 7430  0cc0 11152  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  +crp 13031   ·e cxmu 13150  (,)cioo 13383  [,)cico 13385  [,]cicc 13386  t crest 17466  ordTopcordt 17545  TopOnctopon 22931   Cn ccn 23247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-rp 13032  df-xneg 13151  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-rest 17468  df-topgen 17489  df-ordt 17547  df-ps 18623  df-tsr 18624  df-top 22915  df-topon 22932  df-bases 22968  df-cn 23250  df-cnp 23251
This theorem is referenced by:  esummulc1  34061
  Copyright terms: Public domain W3C validator