Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmulccn Structured version   Visualization version   GIF version

Theorem rmulccn 33888
Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) Avoid ax-mulf 11202. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
rmulccn.1 𝐽 = (topGen‘ran (,))
rmulccn.2 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
rmulccn (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem rmulccn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 24708 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
32a1i 11 . . . . 5 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
43cnmptid 23586 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5 rmulccn.2 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
65recnd 11256 . . . . . 6 (𝜑𝐶 ∈ ℂ)
73, 3, 6cnmptc 23587 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ 𝐶) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
81mpomulcn 24796 . . . . . 6 (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
98a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
10 oveq12 7409 . . . . 5 ((𝑦 = 𝑥𝑧 = 𝐶) → (𝑦 · 𝑧) = (𝑥 · 𝐶))
113, 4, 7, 3, 3, 9, 10cnmpt12 23592 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
12 ax-resscn 11179 . . . 4 ℝ ⊆ ℂ
13 unicntop 24711 . . . . 5 ℂ = (TopOpen‘ℂfld)
1413cnrest 23210 . . . 4 (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ℝ ⊆ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)))
1511, 12, 14sylancl 586 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)))
16 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
176adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
1816, 17mulcld 11248 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥 · 𝐶) ∈ ℂ)
1918ralrimiva 3130 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ)
20 eqid 2734 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) = (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))
2120fnmpt 6675 . . . . . . 7 (∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ)
2219, 21syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ)
2312a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
2422, 23fnssresd 6659 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ)
25 simpr 484 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
26 oveq1 7407 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 · 𝐶) = (𝑤 · 𝐶))
27 resmpt 6022 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)))
2812, 27ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶))
29 ovex 7433 . . . . . . . . 9 (𝑤 · 𝐶) ∈ V
3026, 28, 29fvmpt 6983 . . . . . . . 8 (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶))
3125, 30syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶))
325adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ ℝ)
3325, 32remulcld 11258 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (𝑤 · 𝐶) ∈ ℝ)
3431, 33eqeltrd 2833 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ)
3534ralrimiva 3130 . . . . 5 (𝜑 → ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ)
36 fnfvrnss 7108 . . . . 5 ((((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ ∧ ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ)
3724, 35, 36syl2anc 584 . . . 4 (𝜑 → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ)
38 cnrest2 23211 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
392, 37, 23, 38mp3an2i 1467 . . 3 (𝜑 → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4015, 39mpbid 232 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
41 rmulccn.1 . . . . 5 𝐽 = (topGen‘ran (,))
42 tgioo4 24731 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4341, 42eqtri 2757 . . . 4 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ)
4443, 43oveq12i 7412 . . 3 (𝐽 Cn 𝐽) = (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4544eqcomi 2743 . 2 (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 Cn 𝐽)
4640, 28, 453eltr3g 2849 1 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wss 3924  cmpt 5199  ran crn 5653  cres 5654   Fn wfn 6523  cfv 6528  (class class class)co 7400  cmpo 7402  cc 11120  cr 11121   · cmul 11127  (,)cioo 13354  t crest 17421  TopOpenctopn 17422  topGenctg 17438  fldccnfld 21302  TopOnctopon 22835   Cn ccn 23149   ×t ctx 23485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-er 8714  df-map 8837  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-fi 9418  df-sup 9449  df-inf 9450  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-q 12958  df-rp 13002  df-xneg 13121  df-xadd 13122  df-xmul 13123  df-ioo 13358  df-icc 13361  df-fz 13515  df-fzo 13662  df-seq 14010  df-exp 14070  df-hash 14339  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-xrs 17503  df-qtop 17508  df-imas 17509  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18749  df-mulg 19038  df-cntz 19287  df-cmn 19750  df-psmet 21294  df-xmet 21295  df-met 21296  df-bl 21297  df-mopn 21298  df-cnfld 21303  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cn 23152  df-cnp 23153  df-tx 23487  df-hmeo 23680  df-xms 24246  df-ms 24247  df-tms 24248
This theorem is referenced by:  rrvmulc  34414
  Copyright terms: Public domain W3C validator