Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmulccn Structured version   Visualization version   GIF version

Theorem rmulccn 33901
Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) Avoid ax-mulf 11089. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
rmulccn.1 𝐽 = (topGen‘ran (,))
rmulccn.2 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
rmulccn (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem rmulccn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 24668 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
32a1i 11 . . . . 5 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
43cnmptid 23546 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5 rmulccn.2 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
65recnd 11143 . . . . . 6 (𝜑𝐶 ∈ ℂ)
73, 3, 6cnmptc 23547 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ 𝐶) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
81mpomulcn 24756 . . . . . 6 (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
98a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
10 oveq12 7358 . . . . 5 ((𝑦 = 𝑥𝑧 = 𝐶) → (𝑦 · 𝑧) = (𝑥 · 𝐶))
113, 4, 7, 3, 3, 9, 10cnmpt12 23552 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
12 ax-resscn 11066 . . . 4 ℝ ⊆ ℂ
13 unicntop 24671 . . . . 5 ℂ = (TopOpen‘ℂfld)
1413cnrest 23170 . . . 4 (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ℝ ⊆ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)))
1511, 12, 14sylancl 586 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)))
16 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
176adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
1816, 17mulcld 11135 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥 · 𝐶) ∈ ℂ)
1918ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ)
20 eqid 2729 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) = (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))
2120fnmpt 6622 . . . . . . 7 (∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ)
2219, 21syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ)
2312a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
2422, 23fnssresd 6606 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ)
25 simpr 484 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
26 oveq1 7356 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 · 𝐶) = (𝑤 · 𝐶))
27 resmpt 5988 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)))
2812, 27ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶))
29 ovex 7382 . . . . . . . . 9 (𝑤 · 𝐶) ∈ V
3026, 28, 29fvmpt 6930 . . . . . . . 8 (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶))
3125, 30syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶))
325adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ ℝ)
3325, 32remulcld 11145 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (𝑤 · 𝐶) ∈ ℝ)
3431, 33eqeltrd 2828 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ)
3534ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ)
36 fnfvrnss 7055 . . . . 5 ((((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ ∧ ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ)
3724, 35, 36syl2anc 584 . . . 4 (𝜑 → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ)
38 cnrest2 23171 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
392, 37, 23, 38mp3an2i 1468 . . 3 (𝜑 → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4015, 39mpbid 232 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
41 rmulccn.1 . . . . 5 𝐽 = (topGen‘ran (,))
42 tgioo4 24691 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4341, 42eqtri 2752 . . . 4 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ)
4443, 43oveq12i 7361 . . 3 (𝐽 Cn 𝐽) = (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4544eqcomi 2738 . 2 (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 Cn 𝐽)
4640, 28, 453eltr3g 2844 1 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  cmpt 5173  ran crn 5620  cres 5621   Fn wfn 6477  cfv 6482  (class class class)co 7349  cmpo 7351  cc 11007  cr 11008   · cmul 11014  (,)cioo 13248  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261  TopOnctopon 22795   Cn ccn 23109   ×t ctx 23445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208
This theorem is referenced by:  rrvmulc  34427
  Copyright terms: Public domain W3C validator