| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmulccn | Structured version Visualization version GIF version | ||
| Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) Avoid ax-mulf 11086. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rmulccn.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
| rmulccn.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rmulccn | ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtopon 24697 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 4 | 3 | cnmptid 23576 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 5 | rmulccn.2 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | 5 | recnd 11140 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 7 | 3, 3, 6 | cnmptc 23577 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐶) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 8 | 1 | mpomulcn 24785 | . . . . . 6 ⊢ (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 10 | oveq12 7355 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 𝐶) → (𝑦 · 𝑧) = (𝑥 · 𝐶)) | |
| 11 | 3, 4, 7, 3, 3, 9, 10 | cnmpt12 23582 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 12 | ax-resscn 11063 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 13 | unicntop 24700 | . . . . 5 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
| 14 | 13 | cnrest 23200 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ℝ ⊆ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld))) |
| 15 | 11, 12, 14 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld))) |
| 16 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 17 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) |
| 18 | 16, 17 | mulcld 11132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥 · 𝐶) ∈ ℂ) |
| 19 | 18 | ralrimiva 3124 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ) |
| 20 | eqid 2731 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) = (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) | |
| 21 | 20 | fnmpt 6621 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ) |
| 22 | 19, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ) |
| 23 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 24 | 22, 23 | fnssresd 6605 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ) |
| 25 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) | |
| 26 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (𝑥 · 𝐶) = (𝑤 · 𝐶)) | |
| 27 | resmpt 5985 | . . . . . . . . . 10 ⊢ (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶))) | |
| 28 | 12, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) |
| 29 | ovex 7379 | . . . . . . . . 9 ⊢ (𝑤 · 𝐶) ∈ V | |
| 30 | 26, 28, 29 | fvmpt 6929 | . . . . . . . 8 ⊢ (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶)) |
| 31 | 25, 30 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶)) |
| 32 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ ℝ) |
| 33 | 25, 32 | remulcld 11142 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (𝑤 · 𝐶) ∈ ℝ) |
| 34 | 31, 33 | eqeltrd 2831 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) |
| 35 | 34 | ralrimiva 3124 | . . . . 5 ⊢ (𝜑 → ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) |
| 36 | fnfvrnss 7054 | . . . . 5 ⊢ ((((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ ∧ ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ) | |
| 37 | 24, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ) |
| 38 | cnrest2 23201 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
| 39 | 2, 37, 23, 38 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) |
| 40 | 15, 39 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
| 41 | rmulccn.1 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 42 | tgioo4 24720 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 43 | 41, 42 | eqtri 2754 | . . . 4 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
| 44 | 43, 43 | oveq12i 7358 | . . 3 ⊢ (𝐽 Cn 𝐽) = (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
| 45 | 44 | eqcomi 2740 | . 2 ⊢ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 Cn 𝐽) |
| 46 | 40, 28, 45 | 3eltr3g 2847 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ↦ cmpt 5170 ran crn 5615 ↾ cres 5616 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ℂcc 11004 ℝcr 11005 · cmul 11011 (,)cioo 13245 ↾t crest 17324 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21291 TopOnctopon 22825 Cn ccn 23139 ×t ctx 23475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cn 23142 df-cnp 23143 df-tx 23477 df-hmeo 23670 df-xms 24235 df-ms 24236 df-tms 24237 |
| This theorem is referenced by: rrvmulc 34466 |
| Copyright terms: Public domain | W3C validator |