| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmulccn | Structured version Visualization version GIF version | ||
| Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) Avoid ax-mulf 11089. (Revised by GG, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rmulccn.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
| rmulccn.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rmulccn | ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtopon 24668 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
| 4 | 3 | cnmptid 23546 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 5 | rmulccn.2 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | 5 | recnd 11143 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 7 | 3, 3, 6 | cnmptc 23547 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐶) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 8 | 1 | mpomulcn 24756 | . . . . . 6 ⊢ (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
| 10 | oveq12 7358 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 𝐶) → (𝑦 · 𝑧) = (𝑥 · 𝐶)) | |
| 11 | 3, 4, 7, 3, 3, 9, 10 | cnmpt12 23552 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 12 | ax-resscn 11066 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 13 | unicntop 24671 | . . . . 5 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
| 14 | 13 | cnrest 23170 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ℝ ⊆ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld))) |
| 15 | 11, 12, 14 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld))) |
| 16 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 17 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) |
| 18 | 16, 17 | mulcld 11135 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥 · 𝐶) ∈ ℂ) |
| 19 | 18 | ralrimiva 3121 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ) |
| 20 | eqid 2729 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) = (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) | |
| 21 | 20 | fnmpt 6622 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ) |
| 22 | 19, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ) |
| 23 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 24 | 22, 23 | fnssresd 6606 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ) |
| 25 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) | |
| 26 | oveq1 7356 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (𝑥 · 𝐶) = (𝑤 · 𝐶)) | |
| 27 | resmpt 5988 | . . . . . . . . . 10 ⊢ (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶))) | |
| 28 | 12, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) |
| 29 | ovex 7382 | . . . . . . . . 9 ⊢ (𝑤 · 𝐶) ∈ V | |
| 30 | 26, 28, 29 | fvmpt 6930 | . . . . . . . 8 ⊢ (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶)) |
| 31 | 25, 30 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶)) |
| 32 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ ℝ) |
| 33 | 25, 32 | remulcld 11145 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (𝑤 · 𝐶) ∈ ℝ) |
| 34 | 31, 33 | eqeltrd 2828 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) |
| 35 | 34 | ralrimiva 3121 | . . . . 5 ⊢ (𝜑 → ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) |
| 36 | fnfvrnss 7055 | . . . . 5 ⊢ ((((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ ∧ ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ) | |
| 37 | 24, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ) |
| 38 | cnrest2 23171 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
| 39 | 2, 37, 23, 38 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) |
| 40 | 15, 39 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
| 41 | rmulccn.1 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 42 | tgioo4 24691 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 43 | 41, 42 | eqtri 2752 | . . . 4 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
| 44 | 43, 43 | oveq12i 7361 | . . 3 ⊢ (𝐽 Cn 𝐽) = (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
| 45 | 44 | eqcomi 2738 | . 2 ⊢ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 Cn 𝐽) |
| 46 | 40, 28, 45 | 3eltr3g 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ↦ cmpt 5173 ran crn 5620 ↾ cres 5621 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ℂcc 11007 ℝcr 11008 · cmul 11014 (,)cioo 13248 ↾t crest 17324 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21261 TopOnctopon 22795 Cn ccn 23109 ×t ctx 23445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cn 23112 df-cnp 23113 df-tx 23447 df-hmeo 23640 df-xms 24206 df-ms 24207 df-tms 24208 |
| This theorem is referenced by: rrvmulc 34427 |
| Copyright terms: Public domain | W3C validator |