![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmulccn | Structured version Visualization version GIF version |
Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) Avoid ax-mulf 11239. (Revised by GG, 16-Mar-2025.) |
Ref | Expression |
---|---|
rmulccn.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
rmulccn.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
Ref | Expression |
---|---|
rmulccn | ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | 1 | cnfldtopon 24825 | . . . . . 6 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
4 | 3 | cnmptid 23691 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
5 | rmulccn.2 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | 5 | recnd 11293 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | 3, 3, 6 | cnmptc 23692 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐶) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
8 | 1 | mpomulcn 24913 | . . . . . 6 ⊢ (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
10 | oveq12 7444 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 𝐶) → (𝑦 · 𝑧) = (𝑥 · 𝐶)) | |
11 | 3, 4, 7, 3, 3, 9, 10 | cnmpt12 23697 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
12 | ax-resscn 11216 | . . . 4 ⊢ ℝ ⊆ ℂ | |
13 | unicntop 24828 | . . . . 5 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
14 | 13 | cnrest 23315 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ℝ ⊆ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld))) |
15 | 11, 12, 14 | sylancl 586 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld))) |
16 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
17 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) |
18 | 16, 17 | mulcld 11285 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥 · 𝐶) ∈ ℂ) |
19 | 18 | ralrimiva 3145 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ) |
20 | eqid 2736 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) = (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) | |
21 | 20 | fnmpt 6713 | . . . . . . 7 ⊢ (∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ) |
22 | 19, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ) |
23 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
24 | 22, 23 | fnssresd 6697 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ) |
25 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) | |
26 | oveq1 7442 | . . . . . . . . 9 ⊢ (𝑥 = 𝑤 → (𝑥 · 𝐶) = (𝑤 · 𝐶)) | |
27 | resmpt 6059 | . . . . . . . . . 10 ⊢ (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶))) | |
28 | 12, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) |
29 | ovex 7468 | . . . . . . . . 9 ⊢ (𝑤 · 𝐶) ∈ V | |
30 | 26, 28, 29 | fvmpt 7020 | . . . . . . . 8 ⊢ (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶)) |
31 | 25, 30 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶)) |
32 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ ℝ) |
33 | 25, 32 | remulcld 11295 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (𝑤 · 𝐶) ∈ ℝ) |
34 | 31, 33 | eqeltrd 2840 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) |
35 | 34 | ralrimiva 3145 | . . . . 5 ⊢ (𝜑 → ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) |
36 | fnfvrnss 7145 | . . . . 5 ⊢ ((((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ ∧ ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ) | |
37 | 24, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ) |
38 | cnrest2 23316 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
39 | 2, 37, 23, 38 | mp3an2i 1466 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) |
40 | 15, 39 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
41 | rmulccn.1 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
42 | tgioo4 24848 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
43 | 41, 42 | eqtri 2764 | . . . 4 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
44 | 43, 43 | oveq12i 7447 | . . 3 ⊢ (𝐽 Cn 𝐽) = (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
45 | 44 | eqcomi 2745 | . 2 ⊢ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 Cn 𝐽) |
46 | 40, 28, 45 | 3eltr3g 2856 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∀wral 3060 ⊆ wss 3964 ↦ cmpt 5232 ran crn 5691 ↾ cres 5692 Fn wfn 6561 ‘cfv 6566 (class class class)co 7435 ∈ cmpo 7437 ℂcc 11157 ℝcr 11158 · cmul 11164 (,)cioo 13390 ↾t crest 17473 TopOpenctopn 17474 topGenctg 17490 ℂfldccnfld 21388 TopOnctopon 22938 Cn ccn 23254 ×t ctx 23590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-of 7701 df-om 7892 df-1st 8019 df-2nd 8020 df-supp 8191 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-map 8873 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fsupp 9406 df-fi 9455 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ioo 13394 df-icc 13397 df-fz 13551 df-fzo 13698 df-seq 14046 df-exp 14106 df-hash 14373 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-hom 17328 df-cco 17329 df-rest 17475 df-topn 17476 df-0g 17494 df-gsum 17495 df-topgen 17496 df-pt 17497 df-prds 17500 df-xrs 17555 df-qtop 17560 df-imas 17561 df-xps 17563 df-mre 17637 df-mrc 17638 df-acs 17640 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-mulg 19105 df-cntz 19354 df-cmn 19821 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-cn 23257 df-cnp 23258 df-tx 23592 df-hmeo 23785 df-xms 24352 df-ms 24353 df-tms 24354 |
This theorem is referenced by: rrvmulc 34448 |
Copyright terms: Public domain | W3C validator |