Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmulccn Structured version   Visualization version   GIF version

Theorem rmulccn 31878
Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.)
Hypotheses
Ref Expression
rmulccn.1 𝐽 = (topGen‘ran (,))
rmulccn.2 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
rmulccn (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem rmulccn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 23946 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
32a1i 11 . . . . 5 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
43cnmptid 22812 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5 rmulccn.2 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
65recnd 11003 . . . . . 6 (𝜑𝐶 ∈ ℂ)
73, 3, 6cnmptc 22813 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ 𝐶) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
8 ax-mulf 10951 . . . . . . . . 9 · :(ℂ × ℂ)⟶ℂ
9 ffn 6600 . . . . . . . . 9 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
108, 9ax-mp 5 . . . . . . . 8 · Fn (ℂ × ℂ)
11 fnov 7405 . . . . . . . 8 ( · Fn (ℂ × ℂ) ↔ · = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)))
1210, 11mpbi 229 . . . . . . 7 · = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧))
131mulcn 24030 . . . . . . 7 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1412, 13eqeltrri 2836 . . . . . 6 (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1514a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
16 oveq12 7284 . . . . 5 ((𝑦 = 𝑥𝑧 = 𝐶) → (𝑦 · 𝑧) = (𝑥 · 𝐶))
173, 4, 7, 3, 3, 15, 16cnmpt12 22818 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
18 ax-resscn 10928 . . . 4 ℝ ⊆ ℂ
192toponunii 22065 . . . . 5 ℂ = (TopOpen‘ℂfld)
2019cnrest 22436 . . . 4 (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ℝ ⊆ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)))
2117, 18, 20sylancl 586 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)))
22 simpr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
236adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
2422, 23mulcld 10995 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥 · 𝐶) ∈ ℂ)
2524ralrimiva 3103 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ)
26 eqid 2738 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) = (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))
2726fnmpt 6573 . . . . . . 7 (∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ)
2825, 27syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ)
29 fnssres 6555 . . . . . 6 (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ ∧ ℝ ⊆ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ)
3028, 18, 29sylancl 586 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ)
31 simpr 485 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
32 fvres 6793 . . . . . . . . 9 (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))‘𝑤))
33 recn 10961 . . . . . . . . . 10 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
34 oveq1 7282 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 · 𝐶) = (𝑤 · 𝐶))
35 ovex 7308 . . . . . . . . . . 11 (𝑤 · 𝐶) ∈ V
3634, 26, 35fvmpt 6875 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))‘𝑤) = (𝑤 · 𝐶))
3733, 36syl 17 . . . . . . . . 9 (𝑤 ∈ ℝ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))‘𝑤) = (𝑤 · 𝐶))
3832, 37eqtrd 2778 . . . . . . . 8 (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶))
3931, 38syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶))
405adantr 481 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ ℝ)
4131, 40remulcld 11005 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (𝑤 · 𝐶) ∈ ℝ)
4239, 41eqeltrd 2839 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ)
4342ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ)
44 fnfvrnss 6994 . . . . 5 ((((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ ∧ ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ)
4530, 43, 44syl2anc 584 . . . 4 (𝜑 → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ)
4618a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
47 cnrest2 22437 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
483, 45, 46, 47syl3anc 1370 . . 3 (𝜑 → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4921, 48mpbid 231 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
50 resmpt 5945 . . 3 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)))
5118, 50ax-mp 5 . 2 ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶))
52 rmulccn.1 . . . . 5 𝐽 = (topGen‘ran (,))
531tgioo2 23966 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5452, 53eqtri 2766 . . . 4 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ)
5554, 54oveq12i 7287 . . 3 (𝐽 Cn 𝐽) = (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))
5655eqcomi 2747 . 2 (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 Cn 𝐽)
5749, 51, 563eltr3g 2855 1 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  cmpt 5157   × cxp 5587  ran crn 5590  cres 5591   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  cc 10869  cr 10870   · cmul 10876  (,)cioo 13079  t crest 17131  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475
This theorem is referenced by:  rrvmulc  32420
  Copyright terms: Public domain W3C validator