Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
2 | 1 | cnfldtopon 23852 |
. . . . . 6
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
4 | 3 | cnmptid 22720 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
5 | | rmulccn.2 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 5 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℂ) |
7 | 3, 3, 6 | cnmptc 22721 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝐶) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
8 | | ax-mulf 10882 |
. . . . . . . . 9
⊢ ·
:(ℂ × ℂ)⟶ℂ |
9 | | ffn 6584 |
. . . . . . . . 9
⊢ (
· :(ℂ × ℂ)⟶ℂ → · Fn (ℂ
× ℂ)) |
10 | 8, 9 | ax-mp 5 |
. . . . . . . 8
⊢ ·
Fn (ℂ × ℂ) |
11 | | fnov 7383 |
. . . . . . . 8
⊢ (
· Fn (ℂ × ℂ) ↔ · = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧))) |
12 | 10, 11 | mpbi 229 |
. . . . . . 7
⊢ ·
= (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) |
13 | 1 | mulcn 23936 |
. . . . . . 7
⊢ ·
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
14 | 12, 13 | eqeltrri 2836 |
. . . . . 6
⊢ (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
15 | 14 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
16 | | oveq12 7264 |
. . . . 5
⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 𝐶) → (𝑦 · 𝑧) = (𝑥 · 𝐶)) |
17 | 3, 4, 7, 3, 3, 15,
16 | cnmpt12 22726 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
18 | | ax-resscn 10859 |
. . . 4
⊢ ℝ
⊆ ℂ |
19 | 2 | toponunii 21973 |
. . . . 5
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
20 | 19 | cnrest 22344 |
. . . 4
⊢ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) ∧ ℝ ⊆ ℂ) →
((𝑥 ∈ ℂ ↦
(𝑥 · 𝐶)) ↾ ℝ) ∈
(((TopOpen‘ℂfld) ↾t ℝ) Cn
(TopOpen‘ℂfld))) |
21 | 17, 18, 20 | sylancl 585 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈
(((TopOpen‘ℂfld) ↾t ℝ) Cn
(TopOpen‘ℂfld))) |
22 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
23 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ) |
24 | 22, 23 | mulcld 10926 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥 · 𝐶) ∈ ℂ) |
25 | 24 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ) |
26 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) = (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) |
27 | 26 | fnmpt 6557 |
. . . . . . 7
⊢
(∀𝑥 ∈
ℂ (𝑥 · 𝐶) ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ) |
28 | 25, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ) |
29 | | fnssres 6539 |
. . . . . 6
⊢ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ ∧ ℝ ⊆ ℂ)
→ ((𝑥 ∈ ℂ
↦ (𝑥 · 𝐶)) ↾ ℝ) Fn
ℝ) |
30 | 28, 18, 29 | sylancl 585 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn
ℝ) |
31 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) |
32 | | fvres 6775 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))‘𝑤)) |
33 | | recn 10892 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℂ) |
34 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑥 · 𝐶) = (𝑤 · 𝐶)) |
35 | | ovex 7288 |
. . . . . . . . . . 11
⊢ (𝑤 · 𝐶) ∈ V |
36 | 34, 26, 35 | fvmpt 6857 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))‘𝑤) = (𝑤 · 𝐶)) |
37 | 33, 36 | syl 17 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℝ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))‘𝑤) = (𝑤 · 𝐶)) |
38 | 32, 37 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶)) |
39 | 31, 38 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶)) |
40 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ ℝ) |
41 | 31, 40 | remulcld 10936 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (𝑤 · 𝐶) ∈ ℝ) |
42 | 39, 41 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) |
43 | 42 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) |
44 | | fnfvrnss 6976 |
. . . . 5
⊢ ((((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ ∧
∀𝑤 ∈ ℝ
(((𝑥 ∈ ℂ ↦
(𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) → ran
((𝑥 ∈ ℂ ↦
(𝑥 · 𝐶)) ↾ ℝ) ⊆
ℝ) |
45 | 30, 43, 44 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆
ℝ) |
46 | 18 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ⊆
ℂ) |
47 | | cnrest2 22345 |
. . . 4
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ran ((𝑥 ∈
ℂ ↦ (𝑥 ·
𝐶)) ↾ ℝ)
⊆ ℝ ∧ ℝ ⊆ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈
(((TopOpen‘ℂfld) ↾t ℝ) Cn
(TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈
(((TopOpen‘ℂfld) ↾t ℝ) Cn
((TopOpen‘ℂfld) ↾t
ℝ)))) |
48 | 3, 45, 46, 47 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈
(((TopOpen‘ℂfld) ↾t ℝ) Cn
(TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈
(((TopOpen‘ℂfld) ↾t ℝ) Cn
((TopOpen‘ℂfld) ↾t
ℝ)))) |
49 | 21, 48 | mpbid 231 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈
(((TopOpen‘ℂfld) ↾t ℝ) Cn
((TopOpen‘ℂfld) ↾t
ℝ))) |
50 | | resmpt 5934 |
. . 3
⊢ (ℝ
⊆ ℂ → ((𝑥
∈ ℂ ↦ (𝑥
· 𝐶)) ↾
ℝ) = (𝑥 ∈
ℝ ↦ (𝑥 ·
𝐶))) |
51 | 18, 50 | ax-mp 5 |
. 2
⊢ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) |
52 | | rmulccn.1 |
. . . . 5
⊢ 𝐽 = (topGen‘ran
(,)) |
53 | 1 | tgioo2 23872 |
. . . . 5
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
54 | 52, 53 | eqtri 2766 |
. . . 4
⊢ 𝐽 =
((TopOpen‘ℂfld) ↾t
ℝ) |
55 | 54, 54 | oveq12i 7267 |
. . 3
⊢ (𝐽 Cn 𝐽) = (((TopOpen‘ℂfld)
↾t ℝ) Cn ((TopOpen‘ℂfld)
↾t ℝ)) |
56 | 55 | eqcomi 2747 |
. 2
⊢
(((TopOpen‘ℂfld) ↾t ℝ) Cn
((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 Cn 𝐽) |
57 | 49, 51, 56 | 3eltr3g 2855 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) |