| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3eltr4g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eltr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eltr4g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eltr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 4 | 3eltr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eleqtrrdi 2839 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: riotacl2 7360 rankelun 9825 rankelpr 9826 rankelop 9827 cdivcncf 24814 rrx0el 25298 itg1addlem4 25600 cxpcn3 26658 bposlem4 27198 nosepdm 27596 mirauto 28611 ldgenpisyslem1 34153 weiunfrlem 36452 relowlpssretop 37352 0prjspnlem 42611 mapfzcons 42704 fourierdlem62 46166 fourierdlem63 46167 gpgprismgr4cycllem8 48092 line2x 48743 line2y 48744 |
| Copyright terms: Public domain | W3C validator |