MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4g Structured version   Visualization version   GIF version

Theorem 3eltr4g 2856
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypotheses
Ref Expression
3eltr4g.1 (𝜑𝐴𝐵)
3eltr4g.2 𝐶 = 𝐴
3eltr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4g (𝜑𝐶𝐷)

Proof of Theorem 3eltr4g
StepHypRef Expression
1 3eltr4g.2 . . 3 𝐶 = 𝐴
2 3eltr4g.1 . . 3 (𝜑𝐴𝐵)
31, 2eqeltrid 2843 . 2 (𝜑𝐶𝐵)
4 3eltr4g.3 . 2 𝐷 = 𝐵
53, 4eleqtrrdi 2850 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817
This theorem is referenced by:  riotacl2  7229  rankelun  9561  rankelpr  9562  rankelop  9563  cdivcncf  23990  rrx0el  24467  itg1addlem4  24768  itg1addlem4OLD  24769  cxpcn3  25806  bposlem4  26340  mirauto  26949  ldgenpisyslem1  32031  nosepdm  33814  relowlpssretop  35462  0prjspnlem  40381  mapfzcons  40454  fourierdlem62  43599  fourierdlem63  43600  line2x  45988  line2y  45989
  Copyright terms: Public domain W3C validator