| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3eltr4g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eltr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eltr4g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eltr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 4 | 3eltr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eleqtrrdi 2839 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: riotacl2 7322 rankelun 9768 rankelpr 9769 rankelop 9770 cdivcncf 24812 rrx0el 25296 itg1addlem4 25598 cxpcn3 26656 bposlem4 27196 nosepdm 27594 mirauto 28633 ldgenpisyslem1 34146 weiunfrlem 36458 relowlpssretop 37358 0prjspnlem 42616 mapfzcons 42709 fourierdlem62 46169 fourierdlem63 46170 gpgprismgr4cycllem8 48106 line2x 48759 line2y 48760 |
| Copyright terms: Public domain | W3C validator |