| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3eltr4g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eltr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eltr4g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eltr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 4 | 3eltr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eleqtrrdi 2839 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: riotacl2 7342 rankelun 9801 rankelpr 9802 rankelop 9803 cdivcncf 24847 rrx0el 25331 itg1addlem4 25633 cxpcn3 26691 bposlem4 27231 nosepdm 27629 mirauto 28664 ldgenpisyslem1 34146 weiunfrlem 36445 relowlpssretop 37345 0prjspnlem 42604 mapfzcons 42697 fourierdlem62 46159 fourierdlem63 46160 gpgprismgr4cycllem8 48085 line2x 48736 line2y 48737 |
| Copyright terms: Public domain | W3C validator |