Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eltr4g | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
3eltr4g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr4g.2 | ⊢ 𝐶 = 𝐴 |
3eltr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
4 | 3eltr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | eleqtrrdi 2850 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: riotacl2 7229 rankelun 9561 rankelpr 9562 rankelop 9563 cdivcncf 23990 rrx0el 24467 itg1addlem4 24768 itg1addlem4OLD 24769 cxpcn3 25806 bposlem4 26340 mirauto 26949 ldgenpisyslem1 32031 nosepdm 33814 relowlpssretop 35462 0prjspnlem 40381 mapfzcons 40454 fourierdlem62 43599 fourierdlem63 43600 line2x 45988 line2y 45989 |
Copyright terms: Public domain | W3C validator |