MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4g Structured version   Visualization version   GIF version

Theorem 3eltr4g 2856
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypotheses
Ref Expression
3eltr4g.1 (𝜑𝐴𝐵)
3eltr4g.2 𝐶 = 𝐴
3eltr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4g (𝜑𝐶𝐷)

Proof of Theorem 3eltr4g
StepHypRef Expression
1 3eltr4g.2 . . 3 𝐶 = 𝐴
2 3eltr4g.1 . . 3 (𝜑𝐴𝐵)
31, 2eqeltrid 2843 . 2 (𝜑𝐶𝐵)
4 3eltr4g.3 . 2 𝐷 = 𝐵
53, 4eleqtrrdi 2850 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816
This theorem is referenced by:  riotacl2  7249  rankelun  9630  rankelpr  9631  rankelop  9632  cdivcncf  24084  rrx0el  24562  itg1addlem4  24863  itg1addlem4OLD  24864  cxpcn3  25901  bposlem4  26435  mirauto  27045  ldgenpisyslem1  32131  nosepdm  33887  relowlpssretop  35535  0prjspnlem  40460  mapfzcons  40538  fourierdlem62  43709  fourierdlem63  43710  line2x  46100  line2y  46101
  Copyright terms: Public domain W3C validator