![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eltr4g | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
Ref | Expression |
---|---|
3eltr4g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr4g.2 | ⊢ 𝐶 = 𝐴 |
3eltr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 1, 2 | eqeltrid 2843 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
4 | 3eltr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
5 | 3, 4 | eleqtrrdi 2850 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: riotacl2 7404 rankelun 9910 rankelpr 9911 rankelop 9912 cdivcncf 24961 rrx0el 25446 itg1addlem4 25748 itg1addlem4OLD 25749 cxpcn3 26806 bposlem4 27346 nosepdm 27744 mirauto 28707 ldgenpisyslem1 34144 weiunfrlem 36447 relowlpssretop 37347 0prjspnlem 42610 mapfzcons 42704 fourierdlem62 46124 fourierdlem63 46125 line2x 48604 line2y 48605 |
Copyright terms: Public domain | W3C validator |