| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr4g | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| 3eltr4g.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3eltr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eltr4g | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eltr4g.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 1, 2 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 4 | 3eltr4g.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | eleqtrrdi 2839 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: riotacl2 7342 rankelun 9803 rankelpr 9804 rankelop 9805 cdivcncf 24848 rrx0el 25332 itg1addlem4 25634 cxpcn3 26692 bposlem4 27232 nosepdm 27630 mirauto 28665 ldgenpisyslem1 34147 weiunfrlem 36446 relowlpssretop 37346 0prjspnlem 42605 mapfzcons 42698 fourierdlem62 46160 fourierdlem63 46161 gpgprismgr4cycllem8 48086 line2x 48737 line2y 48738 |
| Copyright terms: Public domain | W3C validator |