MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4g Structured version   Visualization version   GIF version

Theorem 3eltr4g 2856
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof shortened by Wolf Lammen, 23-Nov-2019.)
Hypotheses
Ref Expression
3eltr4g.1 (𝜑𝐴𝐵)
3eltr4g.2 𝐶 = 𝐴
3eltr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4g (𝜑𝐶𝐷)

Proof of Theorem 3eltr4g
StepHypRef Expression
1 3eltr4g.2 . . 3 𝐶 = 𝐴
2 3eltr4g.1 . . 3 (𝜑𝐴𝐵)
31, 2eqeltrid 2843 . 2 (𝜑𝐶𝐵)
4 3eltr4g.3 . 2 𝐷 = 𝐵
53, 4eleqtrrdi 2850 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-clel 2814
This theorem is referenced by:  riotacl2  7404  rankelun  9910  rankelpr  9911  rankelop  9912  cdivcncf  24961  rrx0el  25446  itg1addlem4  25748  itg1addlem4OLD  25749  cxpcn3  26806  bposlem4  27346  nosepdm  27744  mirauto  28707  ldgenpisyslem1  34144  weiunfrlem  36447  relowlpssretop  37347  0prjspnlem  42610  mapfzcons  42704  fourierdlem62  46124  fourierdlem63  46125  line2x  48604  line2y  48605
  Copyright terms: Public domain W3C validator