MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspc3ev Structured version   Visualization version   GIF version

Theorem rspc3ev 3639
Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
rspc3v.1 (𝑥 = 𝐴 → (𝜑𝜒))
rspc3v.2 (𝑦 = 𝐵 → (𝜒𝜃))
rspc3v.3 (𝑧 = 𝐶 → (𝜃𝜓))
Assertion
Ref Expression
rspc3ev (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → ∃𝑥𝑅𝑦𝑆𝑧𝑇 𝜑)
Distinct variable groups:   𝜓,𝑧   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝜒(𝑦,𝑧)   𝜃(𝑥,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑦,𝑧)   𝑆(𝑧)

Proof of Theorem rspc3ev
StepHypRef Expression
1 simpl1 1190 . 2 (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → 𝐴𝑅)
2 simpl2 1191 . 2 (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → 𝐵𝑆)
3 rspc3v.3 . . . 4 (𝑧 = 𝐶 → (𝜃𝜓))
43rspcev 3622 . . 3 ((𝐶𝑇𝜓) → ∃𝑧𝑇 𝜃)
543ad2antl3 1186 . 2 (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → ∃𝑧𝑇 𝜃)
6 rspc3v.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜒))
76rexbidv 3177 . . 3 (𝑥 = 𝐴 → (∃𝑧𝑇 𝜑 ↔ ∃𝑧𝑇 𝜒))
8 rspc3v.2 . . . 4 (𝑦 = 𝐵 → (𝜒𝜃))
98rexbidv 3177 . . 3 (𝑦 = 𝐵 → (∃𝑧𝑇 𝜒 ↔ ∃𝑧𝑇 𝜃))
107, 9rspc2ev 3635 . 2 ((𝐴𝑅𝐵𝑆 ∧ ∃𝑧𝑇 𝜃) → ∃𝑥𝑅𝑦𝑆𝑧𝑇 𝜑)
111, 2, 5, 10syl3anc 1370 1 (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → ∃𝑥𝑅𝑦𝑆𝑧𝑇 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069
This theorem is referenced by:  3rspcedvdw  3640  f1dom3el3dif  7289  wrdl3s3  14998  pmltpclem1  25497  axlowdim  28991  axeuclidlem  28992  upgr3v3e3cycl  30209  br8d  32630  tgoldbachgt  34657  2goelgoanfmla1  35409  br8  35736  br6  35737  3dim1lem5  39449  lplni2  39520  3cubes  42678  jm2.27  42997  grimgrtri  47852  usgrexmpl1tri  47920
  Copyright terms: Public domain W3C validator