| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc3ev | Structured version Visualization version GIF version | ||
| Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| rspc3v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc3v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
| rspc3v.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc3ev | ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → 𝐴 ∈ 𝑅) | |
| 2 | simpl2 1193 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → 𝐵 ∈ 𝑆) | |
| 3 | rspc3v.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) | |
| 4 | 3 | rspcev 3572 | . . 3 ⊢ ((𝐶 ∈ 𝑇 ∧ 𝜓) → ∃𝑧 ∈ 𝑇 𝜃) |
| 5 | 4 | 3ad2antl3 1188 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑧 ∈ 𝑇 𝜃) |
| 6 | rspc3v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 7 | 6 | rexbidv 3156 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑧 ∈ 𝑇 𝜑 ↔ ∃𝑧 ∈ 𝑇 𝜒)) |
| 8 | rspc3v.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 9 | 8 | rexbidv 3156 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑧 ∈ 𝑇 𝜒 ↔ ∃𝑧 ∈ 𝑇 𝜃)) |
| 10 | 7, 9 | rspc2ev 3585 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∃𝑧 ∈ 𝑇 𝜃) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
| 11 | 1, 2, 5, 10 | syl3anc 1373 | 1 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: 3rspcedvdw 3590 f1dom3el3dif 7209 wrdl3s3 14875 pmltpclem1 25382 axlowdim 28946 axeuclidlem 28947 upgr3v3e3cycl 30167 br8d 32598 tgoldbachgt 34683 2goelgoanfmla1 35475 br8 35807 br6 35808 3dim1lem5 39571 lplni2 39642 3cubes 42788 jm2.27 43106 grimgrtri 48054 usgrexmpl1tri 48130 |
| Copyright terms: Public domain | W3C validator |