MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspc3ev Structured version   Visualization version   GIF version

Theorem rspc3ev 3605
Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
rspc3v.1 (𝑥 = 𝐴 → (𝜑𝜒))
rspc3v.2 (𝑦 = 𝐵 → (𝜒𝜃))
rspc3v.3 (𝑧 = 𝐶 → (𝜃𝜓))
Assertion
Ref Expression
rspc3ev (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → ∃𝑥𝑅𝑦𝑆𝑧𝑇 𝜑)
Distinct variable groups:   𝜓,𝑧   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝜒(𝑦,𝑧)   𝜃(𝑥,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑦,𝑧)   𝑆(𝑧)

Proof of Theorem rspc3ev
StepHypRef Expression
1 simpl1 1192 . 2 (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → 𝐴𝑅)
2 simpl2 1193 . 2 (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → 𝐵𝑆)
3 rspc3v.3 . . . 4 (𝑧 = 𝐶 → (𝜃𝜓))
43rspcev 3588 . . 3 ((𝐶𝑇𝜓) → ∃𝑧𝑇 𝜃)
543ad2antl3 1188 . 2 (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → ∃𝑧𝑇 𝜃)
6 rspc3v.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜒))
76rexbidv 3157 . . 3 (𝑥 = 𝐴 → (∃𝑧𝑇 𝜑 ↔ ∃𝑧𝑇 𝜒))
8 rspc3v.2 . . . 4 (𝑦 = 𝐵 → (𝜒𝜃))
98rexbidv 3157 . . 3 (𝑦 = 𝐵 → (∃𝑧𝑇 𝜒 ↔ ∃𝑧𝑇 𝜃))
107, 9rspc2ev 3601 . 2 ((𝐴𝑅𝐵𝑆 ∧ ∃𝑧𝑇 𝜃) → ∃𝑥𝑅𝑦𝑆𝑧𝑇 𝜑)
111, 2, 5, 10syl3anc 1373 1 (((𝐴𝑅𝐵𝑆𝐶𝑇) ∧ 𝜓) → ∃𝑥𝑅𝑦𝑆𝑧𝑇 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054
This theorem is referenced by:  3rspcedvdw  3606  f1dom3el3dif  7244  wrdl3s3  14928  pmltpclem1  25349  axlowdim  28888  axeuclidlem  28889  upgr3v3e3cycl  30109  br8d  32538  tgoldbachgt  34654  2goelgoanfmla1  35411  br8  35743  br6  35744  3dim1lem5  39460  lplni2  39531  3cubes  42678  jm2.27  42997  grimgrtri  47948  usgrexmpl1tri  48016
  Copyright terms: Public domain W3C validator