| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc3ev | Structured version Visualization version GIF version | ||
| Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.) |
| Ref | Expression |
|---|---|
| rspc3v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc3v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
| rspc3v.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc3ev | ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → 𝐴 ∈ 𝑅) | |
| 2 | simpl2 1193 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → 𝐵 ∈ 𝑆) | |
| 3 | rspc3v.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) | |
| 4 | 3 | rspcev 3606 | . . 3 ⊢ ((𝐶 ∈ 𝑇 ∧ 𝜓) → ∃𝑧 ∈ 𝑇 𝜃) |
| 5 | 4 | 3ad2antl3 1188 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑧 ∈ 𝑇 𝜃) |
| 6 | rspc3v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 7 | 6 | rexbidv 3165 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑧 ∈ 𝑇 𝜑 ↔ ∃𝑧 ∈ 𝑇 𝜒)) |
| 8 | rspc3v.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 9 | 8 | rexbidv 3165 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑧 ∈ 𝑇 𝜒 ↔ ∃𝑧 ∈ 𝑇 𝜃)) |
| 10 | 7, 9 | rspc2ev 3619 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∃𝑧 ∈ 𝑇 𝜃) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
| 11 | 1, 2, 5, 10 | syl3anc 1373 | 1 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: 3rspcedvdw 3624 f1dom3el3dif 7267 wrdl3s3 14986 pmltpclem1 25406 axlowdim 28945 axeuclidlem 28946 upgr3v3e3cycl 30166 br8d 32595 tgoldbachgt 34700 2goelgoanfmla1 35451 br8 35778 br6 35779 3dim1lem5 39490 lplni2 39561 3cubes 42680 jm2.27 42999 grimgrtri 47928 usgrexmpl1tri 47996 |
| Copyright terms: Public domain | W3C validator |