HomeHome Metamath Proof Explorer
Theorem List (p. 416 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 41501-41600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrfovcnvf1od 41501* Properties of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 27-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐹 = (𝐴𝑂𝐵)       (𝜑 → (𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵m 𝐴) ∧ 𝐹 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))})))
 
Theoremrfovcnvd 41502* Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 27-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐹 = (𝐴𝑂𝐵)       (𝜑𝐹 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑓𝑥))}))
 
Theoremrfovf1od 41503* The value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, is a bijection. (Contributed by RP, 27-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐹 = (𝐴𝑂𝐵)       (𝜑𝐹:𝒫 (𝐴 × 𝐵)–1-1-onto→(𝒫 𝐵m 𝐴))
 
Theoremrfovcnvfvd 41504* Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐹 = (𝐴𝑂𝐵)    &   (𝜑𝐺 ∈ (𝒫 𝐵m 𝐴))       (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
 
Theoremfsovd 41505* Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
 
Theoremfsovrfovd 41506* The operator which gives a 1-to-1 a mapping to a subset and a reverse mapping from elements can be composed from the operator which gives a 1-to-1 mapping between relations and functions to subsets and the converse operator. (Contributed by RP, 15-May-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑢𝑎 ↦ {𝑣𝑏𝑢𝑟𝑣})))    &   𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠))       (𝜑 → (𝐴𝑂𝐵) = ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ (𝐴𝑅𝐵))))
 
Theoremfsovfvd 41507* Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹. (Contributed by RP, 25-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐺 = (𝐴𝑂𝐵)    &   (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))       (𝜑 → (𝐺𝐹) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
 
Theoremfsovfvfvd 41508* Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹 and element 𝑌. (Contributed by RP, 25-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐺 = (𝐴𝑂𝐵)    &   (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))    &   𝐻 = (𝐺𝐹)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐻𝑌) = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
 
Theoremfsovfd 41509* The operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐺 = (𝐴𝑂𝐵)       (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
 
Theoremfsovcnvlem 41510* The 𝑂 operator, which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, gives a family of functions that include their own inverse. (Contributed by RP, 27-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐺 = (𝐴𝑂𝐵)    &   𝐻 = (𝐵𝑂𝐴)       (𝜑 → (𝐻𝐺) = ( I ↾ (𝒫 𝐵m 𝐴)))
 
Theoremfsovcnvd 41511* The value of the converse (𝐴𝑂𝐵) is (𝐵𝑂𝐴), where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, gives a family of functions that include their own inverse. (Contributed by RP, 27-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐺 = (𝐴𝑂𝐵)    &   𝐻 = (𝐵𝑂𝐴)       (𝜑𝐺 = 𝐻)
 
Theoremfsovcnvfvd 41512* The value of the converse of (𝐴𝑂𝐵), where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, evaluated at function 𝐹. (Contributed by RP, 27-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐺 = (𝐴𝑂𝐵)    &   (𝜑𝐹 ∈ (𝒫 𝐴m 𝐵))       (𝜑 → (𝐺𝐹) = (𝑦𝐴 ↦ {𝑥𝐵𝑦 ∈ (𝐹𝑥)}))
 
Theoremfsovf1od 41513* The value of (𝐴𝑂𝐵) is a bijection, where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets. (Contributed by RP, 27-Apr-2021.)
𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   𝐺 = (𝐴𝑂𝐵)       (𝜑𝐺:(𝒫 𝐵m 𝐴)–1-1-onto→(𝒫 𝐴m 𝐵))
 
Theoremdssmapfvd 41514* Value of the duality operator for self-mappings of subsets of a base set, 𝐵. (Contributed by RP, 19-Apr-2021.)
𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐵𝑉)       (𝜑𝐷 = (𝑓 ∈ (𝒫 𝐵m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵𝑠))))))
 
Theoremdssmapfv2d 41515* Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹. (Contributed by RP, 19-Apr-2021.)
𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐵𝑉)    &   (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))    &   𝐺 = (𝐷𝐹)       (𝜑𝐺 = (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝐹‘(𝐵𝑠)))))
 
Theoremdssmapfv3d 41516* Value of the duality operator for self-mappings of subsets of a base set, 𝐵 when applied to function 𝐹 and subset 𝑆. (Contributed by RP, 19-Apr-2021.)
𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐵𝑉)    &   (𝜑𝐹 ∈ (𝒫 𝐵m 𝒫 𝐵))    &   𝐺 = (𝐷𝐹)    &   (𝜑𝑆 ∈ 𝒫 𝐵)    &   𝑇 = (𝐺𝑆)       (𝜑𝑇 = (𝐵 ∖ (𝐹‘(𝐵𝑆))))
 
Theoremdssmapnvod 41517* For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is its own inverse, an involution. (Contributed by RP, 20-Apr-2021.)
𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐵𝑉)       (𝜑𝐷 = 𝐷)
 
Theoremdssmapf1od 41518* For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021.)
𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐵𝑉)       (𝜑𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
 
Theoremdssmap2d 41519* For any base set 𝐵 the duality operator for self-mappings of subsets of that base set when composed with itself is the restricted identity operator. (Contributed by RP, 21-Apr-2021.)
𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐵𝑉)       (𝜑 → (𝐷𝐷) = ( I ↾ (𝒫 𝐵m 𝒫 𝐵)))
 
20.31.4.2  Generic Pseudoclosure Spaces, Pseudointerior Spaces, and Pseudoneighborhoods

For any base set, 𝐵, an arbitrary mapping of subsets to subsets can be called a pseudoclosure (pseudointerior) function, 𝐾, with its dual of a pseudointerior (pseudoclosure), 𝐼, related by the involution in dssmapfvd 41514. As 𝐾 gains properties of the closure (interior) function of a topology on 𝐵, so does its dual gain corresponding properties of the interior (closure) function of that topology.

As (𝒫 𝐵m 𝒫 𝐵) ≈ (𝒫 𝒫 𝐵m 𝐵) there is also a natural isomorphism which maps from 𝐼 to 𝑁 (and likewise for 𝐾 and 𝑀, introduced below) which identically gains the properties of the neighborhood function of a topology (modified and restricted to operate on single points). A function dual to 𝑁, which Stadler and Stadler refer to as a convergent function, is represented by 𝑀 in this section.

Based on this and the early treatment of topology in Seifert and Threlfall, it seems reasonable to define a pseudotopology as defined in terms of its base set and one of these functions with theorems treating the equivalence of the other definitions and adding topological structure if enough properties hold true.

Neighborhoods Interior Closure Convergents Theorems
Functions 𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) 𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵) 𝑀 ∈ (𝒫 𝒫 𝐵m 𝐵)
Correspondences
(assuming (𝑋𝐵𝑆 ∈ 𝒫 𝐵))
𝑆 ∈ (𝑁𝑋) 𝑋 ∈ (𝐼𝑆) ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆)) ¬ (𝐵𝑆) ∈ (𝑀𝑋) ntrclselnel1 41556, ntrneiel 41580, neicvgel1 41618
¬ (𝐵𝑆) ∈ (𝑁𝑋) ¬ 𝑋 ∈ (𝐼‘(𝐵𝑆)) 𝑋 ∈ (𝐾𝑆) 𝑆 ∈ (𝑀𝑋)
Neighborhoods (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠)} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑠))} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵𝑠) ∈ (𝑀𝑋)} ntrneifv3 41581, clsneifv3 41609, neicvgfv 41620
Interior {𝑥𝐵𝑆 ∈ (𝑁𝑥)} = (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))) = {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑀𝑥)} ntrneifv4 41584, ntrclsfv 41558, clsneifv4 41610
Closure {𝑥𝐵 ∣ ¬ (𝐵𝑆) ∈ (𝑁𝑥)} = (𝐵 ∖ (𝐼‘(𝐵𝑆))) = (𝐾𝑆) = {𝑥𝐵𝑆 ∈ (𝑀𝑥)} clsneifv4 41610, ntrclsfv 41558, ntrneifv4 41584
Convergents {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵𝑠) ∈ (𝑁𝑋)} = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐼‘(𝐵𝑠))} = {𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐾𝑠)} = (𝑀𝑋) neicvgfv 41620, clsneifv3 41609, ntrneifv3 41581

We have the following table of equivalences to axioms largely established by Kuratowski. In the formulas in this table, to reduce the width of the columns, if any of the variables 𝑥, 𝑠, or 𝑡 are used, then they are implicitly universally quantified and 𝑥 (respectively 𝑠 and 𝑡) ranges over 𝐵 (respectively 𝒫 𝐵 and 𝒫 𝐵).

Assuming a prefix of:
𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵
Neighborhoods Interior Closure Convergents Equivalence Theorems
K0'
Neighborhoods are nonempty.
(𝑁𝑥) ≠ ∅ 𝑢 ∈ 𝒫 𝐵𝑥 ∈ (𝐼𝑢) 𝑢 ∈ 𝒫 𝐵¬ 𝑥 ∈ (𝐾𝑢) (𝑀𝑥) ≠ 𝒫 𝐵 ntrclsneine0 41564, ntrneineine0 41586, ntrneineine1 41587
KA'
No neighborhood is equal to the full powerset.
(𝑁𝑥) ≠ 𝒫 𝐵 𝑢 ∈ 𝒫 𝐵¬ 𝑥 ∈ (𝐼𝑢) 𝑢 ∈ 𝒫 𝐵𝑥 ∈ (𝐾𝑢) (𝑀𝑥) ≠ ∅ ntrclsneine0 41564, ntrneineine0 41586, ntrneineine1 41587
K0
Preservation of the Nullary Union of Closures
𝐵 ∈ (𝑁𝑥) (𝐼𝐵) = 𝐵 (𝐾‘∅) = ∅ ¬ ∅ ∈ (𝑀𝑥) ntrclscls00 41565, ntrneicls00 41588, ntrneicls11 41589
KA
Preservation of the Nullary Union of Interiors
¬ ∅ ∈ (𝑁𝑥) (𝐼‘∅) = ∅ (𝐾𝐵) = 𝐵 𝐵 ∈ (𝑀𝑥) ntrclscls00 41565, ntrneicls00 41588, ntrneicls11 41589
K1
Isotonic
Montonic
((𝑠 ∈ (𝑁𝑥) ∧ 𝑠𝑡) → 𝑡 ∈ (𝑁𝑥)) (𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡))
— or —
((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))
— or —
(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∩ (𝐼𝑡))
(𝑠𝑡 → (𝐾𝑠) ⊆ (𝐾𝑡))
— or —
((𝐾𝑠) ∪ (𝐾𝑡)) ⊆ (𝐾‘(𝑠𝑡))
— or —
(𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∩ (𝐾𝑡))
((𝑠 ∈ (𝑀𝑥) ∧ 𝑠𝑡) → 𝑡 ∈ (𝑀𝑥)) isotone1 41547, isotone2 41548, ntrclsiso 41566, ntrneiiso 41590
K2
Closure is Expansive
(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠) (𝐼𝑠) ⊆ 𝑠 𝑠 ⊆ (𝐾𝑠) (𝑥𝑠𝑠 ∈ (𝑀𝑥)) ntrclsk2 41567, ntrneik2 41591, ntrneix2 41592
KB
Non-disjoint Neighborhoods
((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅) ((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵) ((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑀𝑥) ∨ 𝑡 ∈ (𝑀𝑥))) ntrclskb 41568, ntrneikb 41593, ntrneixb 41594
K3
Closure is Sub-linear
((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ∈ (𝑁𝑥)) ((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) (𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡)) ((𝑠𝑡) ∈ (𝑀𝑥) → (𝑠 ∈ (𝑀𝑥) ∨ 𝑡 ∈ (𝑀𝑥))) ntrclsk3 41569, ntrneik3 41595, ntrneix3 41596
K13
Closure is finitely linear
((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥))) (𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) (𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡)) ((𝑠𝑡) ∈ (𝑀𝑥) ↔ (𝑠 ∈ (𝑀𝑥) ∨ 𝑡 ∈ (𝑀𝑥))) ntrclsk13 41570, ntrneik13 41597, ntrneix13 41598
K4
Closure is idempotent
(𝑠 ∈ (𝑁𝑥) ↔ ∃𝑢 ∈ (𝑁𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑁𝑦))) (𝐼‘(𝐼𝑠)) = (𝐼𝑠) (𝐾‘(𝐾𝑠)) = (𝐾𝑠) (𝑠 ∈ (𝑀𝑥) ↔ ∃𝑢 ∈ (𝑀𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑀𝑦))) ntrclsk4 41571, ntrneik4 41600

Using these properties as axiomic constraints on the functions, certain collections of them give rise to named spaces.

Space Foundational Axioms Derived Axioms Theorems
Csázár Generalized Neighborhood Space K2 KA', KA, KB ntrk2imkb 41536, ntrkbimka 41537, neik0imk0p 41535
Min Strong Generalized Neighborhood Space K2, K3 KA', KA, KB ntrk2imkb 41536, ntrkbimka 41537, neik0imk0p 41535
Gniłka Extended Topology K0', K1 K0 neik0pk1imk0 41546
Brissaud Space K0, K2 K0', KA', KA, KB neik0imk0p 41535, ntrk2imkb 41536, ntrkbimka 41537
Neighborhood Space K0', K1, K2 K0, KA', KA, KB neik0pk1imk0 41546, ntrk2imkb 41536, ntrkbimka 41537, neik0imk0p 41535
Davey and Priestley Intersection Structure K1, K4
Moore Closure Space K1, K2, K4 KA', KA, KB ntrk2imkb 41536, ntrkbimka 41537, neik0imk0p 41535
Convex Closure Space K0', K1, K2, K4 K0, KA', KA, KB neik0pk1imk0 41546, ntrk2imkb 41536, ntrkbimka 41537, neik0imk0p 41535
Smyth Neighborhood Space K0', K13 K0, K1, K3 neik0pk1imk0 41546, ntrk1k3eqk13 41549
Čech Closure Space
Pretopological Space
K0', K2, K13 K0, K1, KA', KA, KB, K3 neik0pk1imk0 41546, ntrk2imkb 41536, ntrkbimka 41537, neik0imk0p 41535, ntrk1k3eqk13 41549
Topological Space K0', K2, K13, K4 K0, K1, KA', KA, KB, K3 neik0pk1imk0 41546, ntrk2imkb 41536, ntrkbimka 41537, neik0imk0p 41535, ntrk1k3eqk13 41549
Alexandroff Space K0', K2, K5 K0, K1, KA', KA, KB, K3, K13 neik0pk1imk0 41546, ntrk2imkb 41536, ntrkbimka 41537, neik0imk0p 41535, ntrk1k3eqk13 41549, TBD
Alexandroff Topological Space K0', K2, K4, K5 K0, K1, KA', KA, KB, K3, K13 neik0pk1imk0 41546, ntrk2imkb 41536, ntrkbimka 41537, neik0imk0p 41535, ntrk1k3eqk13 41549, TBD
 
Theoremor3or 41520 Decompose disjunction into three cases. (Contributed by RP, 5-Jul-2021.)
((𝜑𝜓) ↔ ((𝜑𝜓) ∨ (𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)))
 
Theoremandi3or 41521 Distribute over triple disjunction. (Contributed by RP, 5-Jul-2021.)
((𝜑 ∧ (𝜓𝜒𝜃)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒) ∨ (𝜑𝜃)))
 
Theoremuneqsn 41522 If a union of classes is equal to a singleton then at least one class is equal to the singleton while the other may be equal to the empty set. (Contributed by RP, 5-Jul-2021.)
((𝐴𝐵) = {𝐶} ↔ ((𝐴 = {𝐶} ∧ 𝐵 = {𝐶}) ∨ (𝐴 = {𝐶} ∧ 𝐵 = ∅) ∨ (𝐴 = ∅ ∧ 𝐵 = {𝐶})))
 
Theoremdf3o2 41523 Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.)
3o = {∅, 1o, 2o}
 
Theoremdf3o3 41524 Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.)
3o = {∅, {∅}, {∅, {∅}}}
 
Theorembrfvimex 41525 If a binary relation holds and the relation is the value of a function, then the argument to that function is a set. (Contributed by RP, 22-May-2021.)
(𝜑𝐴𝑅𝐵)    &   (𝜑𝑅 = (𝐹𝐶))       (𝜑𝐶 ∈ V)
 
Theorembrovmptimex 41526* If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.)
𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝑅 = (𝐶𝐹𝐷))       (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
 
Theorembrovmptimex1 41527* If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.)
𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝑅 = (𝐶𝐹𝐷))       (𝜑𝐶 ∈ V)
 
Theorembrovmptimex2 41528* If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.)
𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)    &   (𝜑𝐴𝑅𝐵)    &   (𝜑𝑅 = (𝐶𝐹𝐷))       (𝜑𝐷 ∈ V)
 
Theorembrcoffn 41529 Conditions allowing the decomposition of a binary relation. (Contributed by RP, 7-Jun-2021.)
(𝜑𝐶 Fn 𝑌)    &   (𝜑𝐷:𝑋𝑌)    &   (𝜑𝐴(𝐶𝐷)𝐵)       (𝜑 → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))
 
Theorembrcofffn 41530 Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
(𝜑𝐶 Fn 𝑍)    &   (𝜑𝐷:𝑌𝑍)    &   (𝜑𝐸:𝑋𝑌)    &   (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)       (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
 
Theorembrco2f1o 41531 Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
(𝜑𝐶:𝑌1-1-onto𝑍)    &   (𝜑𝐷:𝑋1-1-onto𝑌)    &   (𝜑𝐴(𝐶𝐷)𝐵)       (𝜑 → ((𝐶𝐵)𝐶𝐵𝐴𝐷(𝐶𝐵)))
 
Theorembrco3f1o 41532 Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
(𝜑𝐶:𝑌1-1-onto𝑍)    &   (𝜑𝐷:𝑋1-1-onto𝑌)    &   (𝜑𝐸:𝑊1-1-onto𝑋)    &   (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)       (𝜑 → ((𝐶𝐵)𝐶𝐵 ∧ (𝐷‘(𝐶𝐵))𝐷(𝐶𝐵) ∧ 𝐴𝐸(𝐷‘(𝐶𝐵))))
 
Theoremntrclsbex 41533 If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then the base set exists. (Contributed by RP, 21-May-2021.)
𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑𝐵 ∈ V)
 
Theoremntrclsrcomplex 41534 The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 25-Jun-2021.)
𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
 
Theoremneik0imk0p 41535 Kuratowski's K0 axiom implies K0'. Neighborhood version. Also a proof the dual KA axiom implies KA' when considering the convergents. (Contributed by RP, 28-Jun-2021.)
(∀𝑥𝐵 𝐵 ∈ (𝑁𝑥) → ∀𝑥𝐵 (𝑁𝑥) ≠ ∅)
 
Theoremntrk2imkb 41536* If an interior function is contracting, the interiors of disjoint sets are disjoint. Kuratowski's K2 axiom implies KB. Interior version. (Contributed by RP, 9-Jun-2021.)
(∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 → ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅))
 
Theoremntrkbimka 41537* If the interiors of disjoint sets are disjoint, then the interior of the empty set is the empty set. (Contributed by RP, 14-Jun-2021.)
(∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) → (𝐼‘∅) = ∅)
 
Theoremntrk0kbimka 41538* If the interiors of disjoint sets are disjoint and the interior of the base set is the base set, then the interior of the empty set is the empty set. Obsolete version of ntrkbimka 41537. (Contributed by RP, 12-Jun-2021.)
((𝐵𝑉𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) → (((𝐼𝐵) = 𝐵 ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅)) → (𝐼‘∅) = ∅))
 
Theoremclsk3nimkb 41539* If the base set is not empty, axiom K3 does not imply KB. A concrete example with a pseudo-closure function of 𝑘 = (𝑥 ∈ 𝒫 𝑏 ↦ (𝑏𝑥)) is given. (Contributed by RP, 16-Jun-2021.)
¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) → ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏((𝑠𝑡) = 𝑏 → ((𝑘𝑠) ∪ (𝑘𝑡)) = 𝑏))
 
Theoremclsk1indlem0 41540 The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.)
𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))       (𝐾‘∅) = ∅
 
Theoremclsk1indlem2 41541* The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021.)
𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))       𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠)
 
Theoremclsk1indlem3 41542* The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K3 property of being sub-linear. (Contributed by RP, 6-Jul-2021.)
𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))       𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))
 
Theoremclsk1indlem4 41543* The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K4 property of idempotence. (Contributed by RP, 6-Jul-2021.)
𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))       𝑠 ∈ 𝒫 3o(𝐾‘(𝐾𝑠)) = (𝐾𝑠)
 
Theoremclsk1indlem1 41544* The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) does not have the K1 property of isotony. (Contributed by RP, 6-Jul-2021.)
𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))       𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ (𝐾𝑠) ⊆ (𝐾𝑡))
 
Theoremclsk1independent 41545* For generalized closure functions, property K1 (isotony) is independent of the properties K0, K2, K3, K4. This contradicts a claim which appears in preprints of Table 2 in Bärbel M. R. Stadler and Peter F. Stadler. "Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry." J. Chem. Inf. Comput. Sci., 42:577-585, 2002. Proceedings MCC 2001, Dubrovnik. The same table row implying K1 follows from the other four appears in the supplemental materials Bärbel M. R. Stadler and Peter F. Stadler. "Basic Properties of Closure Spaces" 2001 on page 12. (Contributed by RP, 5-Jul-2021.)
(𝜑 ↔ (𝑘‘∅) = ∅)    &   (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))    &   (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))    &   (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))    &   (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))        ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
 
Theoremneik0pk1imk0 41546* Kuratowski's K0' and K1 axioms imply K0. Neighborhood version. (Contributed by RP, 3-Jun-2021.)
(𝜑𝐵𝑉)    &   (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))    &   (𝜑 → ∀𝑥𝐵 (𝑁𝑥) ≠ ∅)    &   (𝜑 → ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑠𝑡) → 𝑡 ∈ (𝑁𝑥)))       (𝜑 → ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥))
 
Theoremisotone1 41547* Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021.)
(∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝑎𝑏 → (𝐹𝑎) ⊆ (𝐹𝑏)) ↔ ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴((𝐹𝑎) ∪ (𝐹𝑏)) ⊆ (𝐹‘(𝑎𝑏)))
 
Theoremisotone2 41548* Two different ways to say subset relation persists across applications of a function. (Contributed by RP, 31-May-2021.)
(∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝑎𝑏 → (𝐹𝑎) ⊆ (𝐹𝑏)) ↔ ∀𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴(𝐹‘(𝑎𝑏)) ⊆ ((𝐹𝑎) ∩ (𝐹𝑏)))
 
Theoremntrk1k3eqk13 41549* An interior function is both monotone and sub-linear if and only if it is finitely linear. (Contributed by RP, 18-Jun-2021.)
((∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ∧ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)))
 
Theoremntrclsf1o 41550* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator we may characterize the relation as part of a 1-to-1 onto function. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
 
Theoremntrclsnvobr 41551* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then they are related the opposite way. (Contributed by RP, 21-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑𝐾𝐷𝐼)
 
Theoremntrclsiex 41552* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then those functions are maps of subsets to subsets. (Contributed by RP, 21-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
 
Theoremntrclskex 41553* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then those functions are maps of subsets to subsets. (Contributed by RP, 21-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑𝐾 ∈ (𝒫 𝐵m 𝒫 𝐵))
 
Theoremntrclsfv1 41554* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (𝐷𝐼) = 𝐾)
 
Theoremntrclsfv2 41555* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (𝐷𝐾) = 𝐼)
 
Theoremntrclselnel1 41556* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵𝑆))))
 
Theoremntrclselnel2 41557* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in interior of the complement of a set and non-membership in the closure of the set. (Contributed by RP, 28-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝑋 ∈ (𝐼‘(𝐵𝑆)) ↔ ¬ 𝑋 ∈ (𝐾𝑆)))
 
Theoremntrclsfv 41558* The value of the interior (closure) expressed in terms of the closure (interior). (Contributed by RP, 25-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝐼𝑆) = (𝐵 ∖ (𝐾‘(𝐵𝑆))))
 
Theoremntrclsfveq1 41559* If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)    &   (𝜑𝑆 ∈ 𝒫 𝐵)    &   (𝜑𝐶 ∈ 𝒫 𝐵)       (𝜑 → ((𝐼𝑆) = 𝐶 ↔ (𝐾‘(𝐵𝑆)) = (𝐵𝐶)))
 
Theoremntrclsfveq2 41560* If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)    &   (𝜑𝑆 ∈ 𝒫 𝐵)    &   (𝜑𝐶 ∈ 𝒫 𝐵)       (𝜑 → ((𝐼‘(𝐵𝑆)) = 𝐶 ↔ (𝐾𝑆) = (𝐵𝐶)))
 
Theoremntrclsfveq 41561* If interior and closure functions are related then equality of a pair of function values is equivalent to equality of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)    &   (𝜑𝑆 ∈ 𝒫 𝐵)    &   (𝜑𝑇 ∈ 𝒫 𝐵)       (𝜑 → ((𝐼𝑆) = (𝐼𝑇) ↔ (𝐾‘(𝐵𝑆)) = (𝐾‘(𝐵𝑇))))
 
Theoremntrclsss 41562* If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)    &   (𝜑𝑆 ∈ 𝒫 𝐵)    &   (𝜑𝑇 ∈ 𝒫 𝐵)       (𝜑 → ((𝐼𝑆) ⊆ (𝐼𝑇) ↔ (𝐾‘(𝐵𝑇)) ⊆ (𝐾‘(𝐵𝑆))))
 
Theoremntrclsneine0lem 41563* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)    &   (𝜑𝑋𝐵)       (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
 
Theoremntrclsneine0 41564* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 21-May-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐾𝑠)))
 
Theoremntrclscls00 41565* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → ((𝐼𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅))
 
Theoremntrclsiso 41566* If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that either is isotonic hold equally. (Contributed by RP, 3-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐾𝑠) ⊆ (𝐾𝑡))))
 
Theoremntrclsk2 41567* An interior function is contracting if and only if the closure function is expansive. (Contributed by RP, 9-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐾𝑠)))
 
Theoremntrclskb 41568* The interiors of disjoint sets are disjoint if and only if the closures of sets that span the base set also span the base set. (Contributed by RP, 10-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐾𝑠) ∪ (𝐾𝑡)) = 𝐵)))
 
Theoremntrclsk3 41569* The intersection of interiors of a every pair is a subset of the interior of the intersection of the pair if an only if the closure of the union of every pair is a subset of the union of closures of the pair. (Contributed by RP, 19-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))))
 
Theoremntrclsk13 41570* The interior of the intersection of any pair is equal to the intersection of the interiors if and only if the closure of the unions of any pair is equal to the union of closures. (Contributed by RP, 19-Jun-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) = ((𝐾𝑠) ∪ (𝐾𝑡))))
 
Theoremntrclsk4 41571* Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021.)
𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))    &   𝐷 = (𝑂𝐵)    &   (𝜑𝐼𝐷𝐾)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝐾‘(𝐾𝑠)) = (𝐾𝑠)))
 
Theoremntrneibex 41572* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑𝐵 ∈ V)
 
Theoremntrneircomplex 41573* The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
 
Theoremntrneif1o 41574* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, we may characterize the relation as part of a 1-to-1 onto function. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
 
Theoremntrneiiex 41575* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the interior function exists. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
 
Theoremntrneinex 41576* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the neighborhood function exists. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
 
Theoremntrneicnv 41577* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then converse of 𝐹 is known. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑𝐹 = (𝐵𝑂𝒫 𝐵))
 
Theoremntrneifv1 41578* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of 𝐹 is the neighborhood function. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (𝐹𝐼) = 𝑁)
 
Theoremntrneifv2 41579* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (𝐹𝑁) = 𝐼)
 
Theoremntrneiel 41580* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)    &   (𝜑𝑋𝐵)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝑋 ∈ (𝐼𝑆) ↔ 𝑆 ∈ (𝑁𝑋)))
 
Theoremntrneifv3 41581* The value of the neighbors (convergents) expressed in terms of the interior (closure) function. (Contributed by RP, 26-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁𝑋) = {𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠)})
 
Theoremntrneineine0lem 41582* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)    &   (𝜑𝑋𝐵)       (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ (𝑁𝑋) ≠ ∅))
 
Theoremntrneineine1lem 41583* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)    &   (𝜑𝑋𝐵)       (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼𝑠) ↔ (𝑁𝑋) ≠ 𝒫 𝐵))
 
Theoremntrneifv4 41584* The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝐼𝑆) = {𝑥𝐵𝑆 ∈ (𝑁𝑥)})
 
Theoremntrneiel2 41585* Membership in iterated interior of a set is equivalent to there existing a particular neighborhood of that member such that points are members of that neighborhood if and only if the set is a neighborhood of each of those points. (Contributed by RP, 11-Jul-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)    &   (𝜑𝑋𝐵)    &   (𝜑𝑆 ∈ 𝒫 𝐵)       (𝜑 → (𝑋 ∈ (𝐼‘(𝐼𝑆)) ↔ ∃𝑢 ∈ (𝑁𝑋)∀𝑦𝐵 (𝑦𝑢𝑆 ∈ (𝑁𝑦))))
 
Theoremntrneineine0 41586* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑁𝑥) ≠ ∅))
 
Theoremntrneineine1 41587* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑁𝑥) ≠ 𝒫 𝐵))
 
Theoremntrneicls00 41588* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → ((𝐼𝐵) = 𝐵 ↔ ∀𝑥𝐵 𝐵 ∈ (𝑁𝑥)))
 
Theoremntrneicls11 41589* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥𝐵 ¬ ∅ ∈ (𝑁𝑥)))
 
Theoremntrneiiso 41590* If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior function is isotonic hold equally. (Contributed by RP, 3-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝑠𝑡 → (𝐼𝑠) ⊆ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑠𝑡) → 𝑡 ∈ (𝑁𝑥))))
 
Theoremntrneik2 41591* An interior function is contracting if and only if all the neighborhoods of a point contain that point. (Contributed by RP, 11-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
 
Theoremntrneix2 41592* An interior (closure) function is expansive if and only if all subsets which contain a point are neighborhoods (convergents) of that point. (Contributed by RP, 11-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑥𝑠𝑠 ∈ (𝑁𝑥))))
 
Theoremntrneikb 41593* The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = ∅ → ((𝐼𝑠) ∩ (𝐼𝑡)) = ∅) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ≠ ∅)))
 
Theoremntrneixb 41594* The interiors (closures) of sets that span the base set also span the base set if and only if the neighborhoods (convergents) of every point contain at least one of every pair of sets that span the base set. (Contributed by RP, 11-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → ((𝐼𝑠) ∪ (𝐼𝑡)) = 𝐵) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) = 𝐵 → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
 
Theoremntrneik3 41595* The intersection of interiors of any pair is a subset of the interior of the intersection if and only if the intersection of any two neighborhoods of a point is also a neighborhood. (Contributed by RP, 19-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)) → (𝑠𝑡) ∈ (𝑁𝑥))))
 
Theoremntrneix3 41596* The closure of the union of any pair is a subset of the union of closures if and only if the union of any pair belonging to the convergents of a point implies at least one of the pair belongs to the the convergents of that point. (Contributed by RP, 19-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
 
Theoremntrneik13 41597* The interior of the intersection of any pair equals intersection of interiors if and only if the intersection of any pair belonging to the neighborhood of a point is equivalent to both of the pair belonging to the neighborhood of that point. (Contributed by RP, 19-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∩ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∧ 𝑡 ∈ (𝑁𝑥)))))
 
Theoremntrneix13 41598* The closure of the union of any pair is equal to the union of closures if and only if the union of any pair belonging to the convergents of a point if equivalent to at least one of the pain belonging to the convergents of that point. (Contributed by RP, 19-Jun-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
 
Theoremntrneik4w 41599* Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
 
Theoremntrneik4 41600* Idempotence of the interior function is equivalent to stating a set, 𝑠, is a neighborhood of a point, 𝑥 is equivalent to there existing a special neighborhood, 𝑢, of 𝑥 such that a point is an element of the special neighborhood if and only if 𝑠 is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021.)
𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))    &   𝐹 = (𝒫 𝐵𝑂𝐵)    &   (𝜑𝐼𝐹𝑁)       (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ ∃𝑢 ∈ (𝑁𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑁𝑦)))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >