Home | Metamath
Proof Explorer Theorem List (p. 416 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frege68a 41501 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))) | ||
Theorem | axfrege52c 41502 | Justification for ax-frege52c 41503. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
Axiom | ax-frege52c 41503 | One side of dfsbcq 3719. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
Theorem | frege52b 41504 | The case when the content of 𝑥 is identical with the content of 𝑦 and in which a proposition controlled by an element for which we substitute the content of 𝑥 is affirmed and the same proposition, this time where we substitute the content of 𝑦, is denied does not take place. In [𝑥 / 𝑧]𝜑, 𝑥 can also occur in other than the argument (𝑧) places. Hence 𝑥 may still be contained in [𝑦 / 𝑧]𝜑. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | ||
Theorem | frege53b 41505 | Lemma for frege102 (via frege92 41570). Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) | ||
Theorem | axfrege54c 41506 | Reflexive equality of classes. Identical to eqid 2739. Justification for ax-frege54c 41507. (Contributed by RP, 24-Dec-2019.) |
⊢ 𝐴 = 𝐴 | ||
Axiom | ax-frege54c 41507 | Reflexive equality of sets (as classes). Part of Axiom 54 of [Frege1879] p. 50. Identical to eqid 2739. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ 𝐴 = 𝐴 | ||
Theorem | frege54b 41508 | Reflexive equality of sets. The content of 𝑥 is identical with the content of 𝑥. Part of Axiom 54 of [Frege1879] p. 50. Slightly specialized version of eqid 2739. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝑥 = 𝑥 | ||
Theorem | frege54cor1b 41509 | Reflexive equality. (Contributed by RP, 24-Dec-2019.) |
⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | ||
Theorem | frege55lem1b 41510* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → [𝑥 / 𝑦]𝑦 = 𝑧) → (𝜑 → 𝑥 = 𝑧)) | ||
Theorem | frege55lem2b 41511 | Lemma for frege55b 41512. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) | ||
Theorem | frege55b 41512 |
Lemma for frege57b 41514. Proposition 55 of [Frege1879] p. 50.
Note that eqtr2 2763 incorporates eqcom 2746 which is stronger than this proposition which is identical to equcomi 2021. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | frege56b 41513 | Lemma for frege57b 41514. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) | ||
Theorem | frege57b 41514 | Analogue of frege57aid 41487. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | ||
Theorem | axfrege58b 41515 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2072. Justification for ax-frege58b 41516. (Contributed by RP, 28-Mar-2020.) |
⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
Axiom | ax-frege58b 41516 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2072. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
Theorem | frege58bid 41517 | If ∀𝑥𝜑 is affirmed, 𝜑 cannot be denied. Identical to sp 2177. See ax-frege58b 41516 and frege58c 41536 for versions which more closely track the original. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | frege58bcor 41518 | Lemma for frege59b 41519. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | frege59b 41519 |
A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 41428 incorrectly referenced where frege30 41447 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (¬ [𝑦 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | frege60b 41520 | Swap antecedents of ax-frege58b 41516. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝑦 / 𝑥]𝜓 → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
Theorem | frege61b 41521 | Lemma for frege65b 41525. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) | ||
Theorem | frege62b 41522 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2665 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓)) | ||
Theorem | frege63b 41523 | Lemma for frege91 41569. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒))) | ||
Theorem | frege64b 41524 | Lemma for frege65b 41525. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) | ||
Theorem | frege65b 41525 |
A kind of Aristotelian inference. This judgement replaces the mode of
inference barbara 2665 when the minor premise has a general context.
Proposition 65 of [Frege1879] p. 53.
In Frege care is taken to point out that the variables in the first clauses are independent of each other and of the final term so another valid translation could be : ⊢ (∀𝑥([𝑥 / 𝑎]𝜑 → [𝑥 / 𝑏]𝜓) → (∀𝑦([𝑦 / 𝑏]𝜓 → [𝑦 / 𝑐]𝜒) → ([𝑧 / 𝑎]𝜑 → [𝑧 / 𝑐]𝜒))). But that is perhaps too pedantic a translation for this exploration. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
Theorem | frege66b 41526 | Swap antecedents of frege65b 41525. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓))) | ||
Theorem | frege67b 41527 | Lemma for frege68b 41528. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) | ||
Theorem | frege68b 41528 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑)) | ||
Begriffsschrift Chapter II with equivalence of classes (where they are sets). | ||
Theorem | frege53c 41529 | Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝐴 / 𝑥]𝜑 → (𝐴 = 𝐵 → [𝐵 / 𝑥]𝜑)) | ||
Theorem | frege54cor1c 41530* | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.) |
⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 | ||
Theorem | frege55lem1c 41531* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) | ||
Theorem | frege55lem2c 41532* | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → [𝐴 / 𝑧]𝑧 = 𝑥) | ||
Theorem | frege55c 41533 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) | ||
Theorem | frege56c 41534* | Lemma for frege57c 41535. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑))) | ||
Theorem | frege57c 41535* | Swap order of implication in ax-frege52c 41503. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | frege58c 41536 | Principle related to sp 2177. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) | ||
Theorem | frege59c 41537 |
A kind of Aristotelian inference. Proposition 59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 41428 incorrectly referenced where frege30 41447 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | frege60c 41538 | Swap antecedents of frege58c 41536. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜓 → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
Theorem | frege61c 41539 | Lemma for frege65c 41543. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (([𝐴 / 𝑥]𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | frege62c 41540 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2665 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝐴 / 𝑥]𝜓)) | ||
Theorem | frege63c 41541 | Analogue of frege63b 41523. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) | ||
Theorem | frege64c 41542 | Lemma for frege65c 41543. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (([𝐶 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐶 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
Theorem | frege65c 41543 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2665 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
Theorem | frege66c 41544 | Swap antecedents of frege65c 41543. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) | ||
Theorem | frege67c 41545 | Lemma for frege68c 41546. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑))) | ||
Theorem | frege68c 41546 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) | ||
(𝑅 “ 𝐴) ⊆ 𝐴 means membership in 𝐴 is hereditary in the sequence dictated by relation 𝑅. This differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. While the above notation is modern, it is cumbersome in the case when 𝐴 is complex and to more closely follow Frege, we abbreviate it with new notation 𝑅 hereditary 𝐴. This greatly shortens the statements for frege97 41575 and frege109 41587. dffrege69 41547 through frege75 41553 develop this, but translation to Metamath is pending some decisions. While Frege does not limit discussion to sets, we may have to depart from Frege by limiting 𝑅 or 𝐴 to sets when we quantify over all hereditary relations or all classes where membership is hereditary in a sequence dictated by 𝑅. | ||
Theorem | dffrege69 41547* | If from the proposition that 𝑥 has property 𝐴 it can be inferred generally, whatever 𝑥 may be, that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then we say " Property 𝐴 is hereditary in the 𝑅-sequence. Definition 69 of [Frege1879] p. 55. (Contributed by RP, 28-Mar-2020.) |
⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) | ||
Theorem | frege70 41548* | Lemma for frege72 41550. Proposition 70 of [Frege1879] p. 58. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑉 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) | ||
Theorem | frege71 41549* | Lemma for frege72 41550. Proposition 71 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑉 ⇒ ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) | ||
Theorem | frege72 41550 | If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege73 41551 | Lemma for frege87 41565. Proposition 73 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ ((𝑅 hereditary 𝐴 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege74 41552 | If 𝑋 has a property 𝐴 that is hereditary in the 𝑅-sequence, then every result of a application of the procedure 𝑅 to 𝑋 has the property 𝐴. Proposition 74 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege75 41553* | If from the proposition that 𝑥 has property 𝐴, whatever 𝑥 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then property 𝐴 is hereditary in the 𝑅-sequence. Proposition 75 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → 𝑅 hereditary 𝐴) | ||
𝑝(t+‘𝑅)𝑐 means 𝑐 follows 𝑝 in the 𝑅-sequence. dffrege76 41554 through frege98 41576 develop this. This will be shown to be the transitive closure of the relation 𝑅. But more work needs to be done on transitive closure of relations before this is ready for Metamath. | ||
Theorem | dffrege76 41554* |
If from the two propositions that every result of an application of
the procedure 𝑅 to 𝐵 has property 𝑓 and
that property
𝑓 is hereditary in the 𝑅-sequence, it can be inferred,
whatever 𝑓 may be, that 𝐸 has property 𝑓, then
we say
𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of
[Frege1879] p. 60.
Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.) |
⊢ 𝐵 ∈ 𝑈 & ⊢ 𝐸 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) | ||
Theorem | frege77 41555* | If 𝑌 follows 𝑋 in the 𝑅-sequence, if property 𝐴 is hereditary in the 𝑅-sequence, and if every result of an application of the procedure 𝑅 to 𝑋 has the property 𝐴, then 𝑌 has property 𝐴. Proposition 77 of [Frege1879] p. 62. (Contributed by RP, 29-Jun-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴))) | ||
Theorem | frege78 41556* | Commuted form of of frege77 41555. Proposition 78 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege79 41557* | Distributed form of frege78 41556. Proposition 79 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege80 41558* | Add additional condition to both clauses of frege79 41557. Proposition 80 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴))) → (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴)))) | ||
Theorem | frege81 41559 | If 𝑋 has a property 𝐴 that is hereditary in the 𝑅 -sequence, and if 𝑌 follows 𝑋 in the 𝑅-sequence, then 𝑌 has property 𝐴. This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege82 41560 | Closed-form deduction based on frege81 41559. Proposition 82 of [Frege1879] p. 64. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝜑 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝜑 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴)))) | ||
Theorem | frege83 41561 | Apply commuted form of frege81 41559 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑆 & ⊢ 𝑌 ∈ 𝑇 & ⊢ 𝑅 ∈ 𝑈 & ⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐶 ∈ 𝑊 ⇒ ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) | ||
Theorem | frege84 41562 | Commuted form of frege81 41559. Proposition 84 of [Frege1879] p. 65. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege85 41563* | Commuted form of frege77 41555. Proposition 85 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴))) | ||
Theorem | frege86 41564* | Conclusion about element one past 𝑌 in the 𝑅-sequence. Proposition 86 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (((𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴))) → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴))))) | ||
Theorem | frege87 41565* | If 𝑍 is a result of an application of the procedure 𝑅 to an object 𝑌 that follows 𝑋 in the 𝑅-sequence and if every result of an application of the procedure 𝑅 to 𝑋 has a property 𝐴 that is hereditary in the 𝑅-sequence, then 𝑍 has property 𝐴. Proposition 87 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴)))) | ||
Theorem | frege88 41566* | Commuted form of frege87 41565. Proposition 88 of [Frege1879] p. 67. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑍 ∈ 𝐴)))) | ||
Theorem | frege89 41567* | One direction of dffrege76 41554. Proposition 89 of [Frege1879] p. 68. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) | ||
Theorem | frege90 41568* | Add antecedent to frege89 41567. Proposition 90 of [Frege1879] p. 68. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ ((𝜑 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (𝜑 → 𝑋(t+‘𝑅)𝑌)) | ||
Theorem | frege91 41569 | Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) | ||
Theorem | frege92 41570 | Inference from frege91 41569. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) | ||
Theorem | frege93 41571* | Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) | ||
Theorem | frege94 41572* | Looking one past a pair related by transitive closure of a relation. Proposition 94 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑍 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ ((𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → ∀𝑓(∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑍 ∈ 𝑓)))) → (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → 𝑋(t+‘𝑅)𝑍))) | ||
Theorem | frege95 41573 | Looking one past a pair related by transitive closure of a relation. Proposition 95 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝐴 ⇒ ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → 𝑋(t+‘𝑅)𝑍)) | ||
Theorem | frege96 41574 | Every result of an application of the procedure 𝑅 to an object that follows 𝑋 in the 𝑅-sequence follows 𝑋 in the 𝑅 -sequence. Proposition 96 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝐴 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌𝑅𝑍 → 𝑋(t+‘𝑅)𝑍)) | ||
Theorem | frege97 41575 |
The property of following 𝑋 in the 𝑅-sequence is hereditary
in the 𝑅-sequence. Proposition 97 of [Frege1879] p. 71.
Here we introduce the image of a singleton under a relation as class which stands for the property of following 𝑋 in the 𝑅 -sequence. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ 𝑅 hereditary ((t+‘𝑅) “ {𝑋}) | ||
Theorem | frege98 41576 | If 𝑌 follows 𝑋 and 𝑍 follows 𝑌 in the 𝑅-sequence then 𝑍 follows 𝑋 in the 𝑅-sequence because the transitive closure of a relation has the transitive property. Proposition 98 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 6-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑍 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) | ||
𝑝((t+‘𝑅) ∪ I )𝑐 means 𝑐 is a member of the 𝑅 -sequence begining with 𝑝 and 𝑝 is a member of the 𝑅 -sequence ending with 𝑐. dffrege99 41577 through frege114 41592 develop this. This will be shown to be related to the transitive-reflexive closure of relation 𝑅. But more work needs to be done on transitive closure of relations before this is ready for Metamath. | ||
Theorem | dffrege99 41577 | If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) |
⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
Theorem | frege100 41578 | One direction of dffrege99 41577. Proposition 100 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) | ||
Theorem | frege101 41579 | Lemma for frege102 41580. Proposition 101 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ ((𝑍 = 𝑋 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)))) | ||
Theorem | frege102 41580 | If 𝑍 belongs to the 𝑅-sequence beginning with 𝑋, then every result of an application of the procedure 𝑅 to 𝑍 follows 𝑋 in the 𝑅-sequence. Proposition 102 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑍 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) | ||
Theorem | frege103 41581 | Proposition 103 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) | ||
Theorem | frege104 41582 |
Proposition 104 of [Frege1879] p. 73.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) | ||
Theorem | frege105 41583 | Proposition 105 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
Theorem | frege106 41584 | Whatever follows 𝑋 in the 𝑅-sequence belongs to the 𝑅 -sequence beginning with 𝑋. Proposition 106 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑋(t+‘𝑅)𝑍 → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
Theorem | frege107 41585 | Proposition 107 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑉 ∈ 𝐴 ⇒ ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) | ||
Theorem | frege108 41586 | If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍. Proposition 108 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉)) | ||
Theorem | frege109 41587 | The property of belonging to the 𝑅-sequence beginning with 𝑋 is hereditary in the 𝑅-sequence. Proposition 109 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) | ||
Theorem | frege110 41588* | Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑀 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) | ||
Theorem | frege111 41589 | If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍 or precedes 𝑍 in the 𝑅-sequence. Proposition 111 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Revised by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍 → 𝑍((t+‘𝑅) ∪ I )𝑉))) | ||
Theorem | frege112 41590 | Identity implies belonging to the 𝑅-sequence beginning with self. Proposition 112 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
Theorem | frege113 41591 | Proposition 113 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍))) | ||
Theorem | frege114 41592 | If 𝑋 belongs to the 𝑅-sequence beginning with 𝑍, then 𝑍 belongs to the 𝑅-sequence beginning with 𝑋 or 𝑋 follows 𝑍 in the 𝑅-sequence. Proposition 114 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) | ||
Fun ◡◡𝑅 means the relationship content of procedure 𝑅 is single-valued. The double converse allows us to simply apply this syntax in place of Frege's even though the original never explicitly limited discussion of propositional statements which vary on two variables to relations. dffrege115 41593 through frege133 41611 develop this and how functions relate to transitive and transitive-reflexive closures. | ||
Theorem | dffrege115 41593* | If from the circumstance that 𝑐 is a result of an application of the procedure 𝑅 to 𝑏, whatever 𝑏 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑏 is the same as 𝑐, then we say : "The procedure 𝑅 is single-valued". Definition 115 of [Frege1879] p. 77. (Contributed by RP, 7-Jul-2020.) |
⊢ (∀𝑐∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ Fun ◡◡𝑅) | ||
Theorem | frege116 41594* | One direction of dffrege115 41593. Proposition 116 of [Frege1879] p. 77. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 ⇒ ⊢ (Fun ◡◡𝑅 → ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋))) | ||
Theorem | frege117 41595* | Lemma for frege118 41596. Proposition 117 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 ⇒ ⊢ ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋)))) | ||
Theorem | frege118 41596* | Simplified application of one direction of dffrege115 41593. Proposition 118 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) | ||
Theorem | frege119 41597* | Lemma for frege120 41598. Proposition 119 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) | ||
Theorem | frege120 41598 | Simplified application of one direction of dffrege115 41593. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) | ||
Theorem | frege121 41599 | Lemma for frege122 41600. Proposition 121 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ ((𝐴 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝐴) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝑋((t+‘𝑅) ∪ I )𝐴)))) | ||
Theorem | frege122 41600 | If 𝑋 is a result of an application of the single-valued procedure 𝑅 to 𝑌, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑋. Proposition 122 of [Frege1879] p. 79. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝑋((t+‘𝑅) ∪ I )𝐴))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |