HomeHome Metamath Proof Explorer
Theorem List (p. 416 of 480)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30435)
  Hilbert Space Explorer  Hilbert Space Explorer
(30436-31958)
  Users' Mathboxes  Users' Mathboxes
(31959-47941)
 

Theorem List for Metamath Proof Explorer - 41501-41600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsqn5ii 41501 The square of a number ending in 5. This shortcut only works because 5 is half of 10. (Contributed by Steven Nguyen, 16-Sep-2022.)
𝐴 ∈ β„•0    &   (𝐴 + 1) = 𝐡    &   (𝐴 Β· 𝐡) = 𝐢    β‡’   (𝐴5 Β· 𝐴5) = 𝐢25
 
Theoremdecpmulnc 41502 Partial products algorithm for two digit multiplication, no carry. Compare muladdi 11670. (Contributed by Steven Nguyen, 9-Dec-2022.)
𝐴 ∈ β„•0    &   π΅ ∈ β„•0    &   πΆ ∈ β„•0    &   π· ∈ β„•0    &   (𝐴 Β· 𝐢) = 𝐸    &   ((𝐴 Β· 𝐷) + (𝐡 Β· 𝐢)) = 𝐹    &   (𝐡 Β· 𝐷) = 𝐺    β‡’   (𝐴𝐡 Β· 𝐢𝐷) = 𝐸𝐹𝐺
 
Theoremdecpmul 41503 Partial products algorithm for two digit multiplication. (Contributed by Steven Nguyen, 10-Dec-2022.)
𝐴 ∈ β„•0    &   π΅ ∈ β„•0    &   πΆ ∈ β„•0    &   π· ∈ β„•0    &   (𝐴 Β· 𝐢) = 𝐸    &   ((𝐴 Β· 𝐷) + (𝐡 Β· 𝐢)) = 𝐹    &   (𝐡 Β· 𝐷) = 𝐺𝐻    &   (𝐸𝐺 + 𝐹) = 𝐼    &   πΊ ∈ β„•0    &   π» ∈ β„•0    β‡’   (𝐴𝐡 Β· 𝐢𝐷) = 𝐼𝐻
 
Theoremsqdeccom12 41504 The square of a number in terms of its digits switched. (Contributed by Steven Nguyen, 3-Jan-2023.)
𝐴 ∈ β„•0    &   π΅ ∈ β„•0    β‡’   ((𝐴𝐡 Β· 𝐴𝐡) βˆ’ (𝐡𝐴 Β· 𝐡𝐴)) = (99 Β· ((𝐴 Β· 𝐴) βˆ’ (𝐡 Β· 𝐡)))
 
Theoremsq3deccom12 41505 Variant of sqdeccom12 41504 with a three digit square. (Contributed by Steven Nguyen, 3-Jan-2023.)
𝐴 ∈ β„•0    &   π΅ ∈ β„•0    &   πΆ ∈ β„•0    &   (𝐴 + 𝐢) = 𝐷    β‡’   ((𝐴𝐡𝐢 Β· 𝐴𝐡𝐢) βˆ’ (𝐷𝐡 Β· 𝐷𝐡)) = (99 Β· ((𝐴𝐡 Β· 𝐴𝐡) βˆ’ (𝐢 Β· 𝐢)))
 
Theorem4t5e20 41506 4 times 5 equals 20. (Contributed by SN, 30-Mar-2025.)
(4 Β· 5) = 20
 
Theoremsq9 41507 The square of 9 is 81. (Contributed by SN, 30-Mar-2025.)
(9↑2) = 81
 
Theorem235t711 41508 Calculate a product by long multiplication as a base comparison with other multiplication algorithms.

Conveniently, 711 has two ones which greatly simplifies calculations like 235 Β· 1. There isn't a higher level mulcomli 11228 saving the lower level uses of mulcomli 11228 within 235 Β· 7 since mulcom2 doesn't exist, but if commuted versions of theorems like 7t2e14 12791 are added then this proof would benefit more than ex-decpmul 41509.

For practicality, this proof doesn't have "e167085" at the end of its name like 2p2e4 12352 or 8t7e56 12802. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.)

(235 Β· 711) = 167085
 
Theoremex-decpmul 41509 Example usage of decpmul 41503. This proof is significantly longer than 235t711 41508. There is more unnecessary carrying compared to 235t711 41508. Although saving 5 visual steps, using mulcomli 11228 early on increases the compressed proof length. (Contributed by Steven Nguyen, 10-Dec-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
(235 Β· 711) = 167085
 
Theoremfz1sumconst 41510* The sum of 𝑁 constant terms (π‘˜ is not free in 𝐢). (Contributed by SN, 21-Mar-2025.)
(πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ (1...𝑁)𝐢 = (𝑁 Β· 𝐢))
 
Theoremfz1sump1 41511* Add one more term to a sum. Special case of fsump1 15707 generalized to 𝑁 ∈ β„•0. (Contributed by SN, 22-Mar-2025.)
(πœ‘ β†’ 𝑁 ∈ β„•0)    &   ((πœ‘ ∧ π‘˜ ∈ (1...(𝑁 + 1))) β†’ 𝐴 ∈ β„‚)    &   (π‘˜ = (𝑁 + 1) β†’ 𝐴 = 𝐡)    β‡’   (πœ‘ β†’ Ξ£π‘˜ ∈ (1...(𝑁 + 1))𝐴 = (Ξ£π‘˜ ∈ (1...𝑁)𝐴 + 𝐡))
 
Theoremoddnumth 41512* The Odd Number Theorem. The sum of the first 𝑁 odd numbers is 𝑁↑2. A corollary of arisum 15811. (Contributed by SN, 21-Mar-2025.)
(𝑁 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑁)((2 Β· π‘˜) βˆ’ 1) = (𝑁↑2))
 
Theoremnicomachus 41513* Nicomachus's Theorem. The sum of the odd numbers from 𝑁↑2 βˆ’ 𝑁 + 1 to 𝑁↑2 + 𝑁 βˆ’ 1 is 𝑁↑3. Proof 2 from https://proofwiki.org/wiki/Nicomachus%27s_Theorem. (Contributed by SN, 21-Mar-2025.)
(𝑁 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑁)(((𝑁↑2) βˆ’ 𝑁) + ((2 Β· π‘˜) βˆ’ 1)) = (𝑁↑3))
 
Theoremsumcubes 41514* The sum of the first 𝑁 perfect cubes is the sum of the first 𝑁 nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025.)
(𝑁 ∈ β„•0 β†’ Ξ£π‘˜ ∈ (1...𝑁)(π‘˜β†‘3) = (Ξ£π‘˜ ∈ (1...𝑁)π‘˜β†‘2))
 
21.28.4  Exponents and divisibility
 
Theoremoexpreposd 41515 Lemma for dffltz 41679. TODO-SN?: This can be used to show exp11d 41519 holds for all integers when the exponent is odd. The more standard Β¬ 2 βˆ₯ 𝑀 should be used. (Contributed by SN, 4-Mar-2023.)
(πœ‘ β†’ 𝑁 ∈ ℝ)    &   (πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ Β¬ (𝑀 / 2) ∈ β„•)    β‡’   (πœ‘ β†’ (0 < 𝑁 ↔ 0 < (𝑁↑𝑀)))
 
Theoremltexp1d 41516 ltmul1d 13062 for exponentiation of positive reals. (Contributed by Steven Nguyen, 22-Aug-2023.)
(πœ‘ β†’ 𝐴 ∈ ℝ+)    &   (πœ‘ β†’ 𝐡 ∈ ℝ+)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    β‡’   (πœ‘ β†’ (𝐴 < 𝐡 ↔ (𝐴↑𝑁) < (𝐡↑𝑁)))
 
Theoremltexp1dd 41517 Raising both sides of 'less than' to the same positive integer preserves ordering. (Contributed by Steven Nguyen, 24-Aug-2023.)
(πœ‘ β†’ 𝐴 ∈ ℝ+)    &   (πœ‘ β†’ 𝐡 ∈ ℝ+)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   (πœ‘ β†’ 𝐴 < 𝐡)    β‡’   (πœ‘ β†’ (𝐴↑𝑁) < (𝐡↑𝑁))
 
Theoremexp11nnd 41518 sq11d 14226 for positive real bases and positive integer exponents. The base cannot be generalized much further, since if 𝑁 is even then we have 𝐴↑𝑁 = -𝐴↑𝑁. (Contributed by SN, 14-Sep-2023.)
(πœ‘ β†’ 𝐴 ∈ ℝ+)    &   (πœ‘ β†’ 𝐡 ∈ ℝ+)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    &   (πœ‘ β†’ (𝐴↑𝑁) = (𝐡↑𝑁))    β‡’   (πœ‘ β†’ 𝐴 = 𝐡)
 
Theoremexp11d 41519 exp11nnd 41518 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.)
(πœ‘ β†’ 𝐴 ∈ ℝ+)    &   (πœ‘ β†’ 𝐡 ∈ ℝ+)    &   (πœ‘ β†’ 𝑁 ∈ β„€)    &   (πœ‘ β†’ 𝑁 β‰  0)    &   (πœ‘ β†’ (𝐴↑𝑁) = (𝐡↑𝑁))    β‡’   (πœ‘ β†’ 𝐴 = 𝐡)
 
Theorem0dvds0 41520 0 divides 0. (Contributed by SN, 15-Sep-2024.)
0 βˆ₯ 0
 
Theoremabsdvdsabsb 41521 Divisibility is invariant under taking the absolute value on both sides. (Contributed by SN, 15-Sep-2024.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝑀 βˆ₯ 𝑁 ↔ (absβ€˜π‘€) βˆ₯ (absβ€˜π‘)))
 
Theoremdvdsexpim 41522 dvdssqim 16501 generalized to nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝑁 ∈ β„•0) β†’ (𝐴 βˆ₯ 𝐡 β†’ (𝐴↑𝑁) βˆ₯ (𝐡↑𝑁)))
 
Theoremgcdnn0id 41523 The gcd of a nonnegative integer and itself is the integer. (Contributed by SN, 25-Aug-2024.)
(𝑁 ∈ β„•0 β†’ (𝑁 gcd 𝑁) = 𝑁)
 
Theoremgcdle1d 41524 The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024.)
(πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ 𝑁 ∈ β„€)    β‡’   (πœ‘ β†’ (𝑀 gcd 𝑁) ≀ 𝑀)
 
Theoremgcdle2d 41525 The greatest common divisor of a positive integer and another integer is less than or equal to the positive integer. (Contributed by SN, 25-Aug-2024.)
(πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    β‡’   (πœ‘ β†’ (𝑀 gcd 𝑁) ≀ 𝑁)
 
Theoremdvdsexpad 41526 Deduction associated with dvdsexpim 41522. (Contributed by SN, 21-Aug-2024.)
(πœ‘ β†’ 𝐴 ∈ β„€)    &   (πœ‘ β†’ 𝐡 ∈ β„€)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝐴 βˆ₯ 𝐡)    β‡’   (πœ‘ β†’ (𝐴↑𝑁) βˆ₯ (𝐡↑𝑁))
 
Theoremnn0rppwr 41527 If 𝐴 and 𝐡 are relatively prime, then so are 𝐴↑𝑁 and 𝐡↑𝑁. rppwr 16506 extended to nonnegative integers. Less general than rpexp12i 16666. (Contributed by Steven Nguyen, 4-Apr-2023.)
((𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„•0 ∧ 𝑁 ∈ β„•0) β†’ ((𝐴 gcd 𝐡) = 1 β†’ ((𝐴↑𝑁) gcd (𝐡↑𝑁)) = 1))
 
Theoremexpgcd 41528 Exponentiation distributes over GCD. sqgcd 16507 extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023.)
((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝑁 ∈ β„•0) β†’ ((𝐴 gcd 𝐡)↑𝑁) = ((𝐴↑𝑁) gcd (𝐡↑𝑁)))
 
Theoremnn0expgcd 41529 Exponentiation distributes over GCD. nn0gcdsq 16693 extended to nonnegative exponents. expgcd 41528 extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„•0 ∧ 𝑁 ∈ β„•0) β†’ ((𝐴 gcd 𝐡)↑𝑁) = ((𝐴↑𝑁) gcd (𝐡↑𝑁)))
 
Theoremzexpgcd 41530 Exponentiation distributes over GCD. zgcdsq 16694 extended to nonnegative exponents. nn0expgcd 41529 extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝑁 ∈ β„•0) β†’ ((𝐴 gcd 𝐡)↑𝑁) = ((𝐴↑𝑁) gcd (𝐡↑𝑁)))
 
Theoremnumdenexp 41531 numdensq 16695 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ β„š ∧ 𝑁 ∈ β„•0) β†’ ((numerβ€˜(𝐴↑𝑁)) = ((numerβ€˜π΄)↑𝑁) ∧ (denomβ€˜(𝐴↑𝑁)) = ((denomβ€˜π΄)↑𝑁)))
 
Theoremnumexp 41532 numsq 16696 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ β„š ∧ 𝑁 ∈ β„•0) β†’ (numerβ€˜(𝐴↑𝑁)) = ((numerβ€˜π΄)↑𝑁))
 
Theoremdenexp 41533 densq 16697 extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023.)
((𝐴 ∈ β„š ∧ 𝑁 ∈ β„•0) β†’ (denomβ€˜(𝐴↑𝑁)) = ((denomβ€˜π΄)↑𝑁))
 
Theoremdvdsexpnn 41534 dvdssqlem 16508 generalized to positive integer exponents. (Contributed by SN, 20-Aug-2024.)
((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ 𝑁 ∈ β„•) β†’ (𝐴 βˆ₯ 𝐡 ↔ (𝐴↑𝑁) βˆ₯ (𝐡↑𝑁)))
 
Theoremdvdsexpnn0 41535 dvdsexpnn 41534 generalized to include zero bases. (Contributed by SN, 15-Sep-2024.)
((𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„•0 ∧ 𝑁 ∈ β„•) β†’ (𝐴 βˆ₯ 𝐡 ↔ (𝐴↑𝑁) βˆ₯ (𝐡↑𝑁)))
 
Theoremdvdsexpb 41536 dvdssq 16509 generalized to positive integer exponents. (Contributed by SN, 15-Sep-2024.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝑁 ∈ β„•) β†’ (𝐴 βˆ₯ 𝐡 ↔ (𝐴↑𝑁) βˆ₯ (𝐡↑𝑁)))
 
Theoremposqsqznn 41537 When a positive rational squared is an integer, the rational is a positive integer. zsqrtelqelz 16699 with all terms squared and positive. (Contributed by SN, 23-Aug-2024.)
(πœ‘ β†’ (𝐴↑2) ∈ β„€)    &   (πœ‘ β†’ 𝐴 ∈ β„š)    &   (πœ‘ β†’ 0 < 𝐴)    β‡’   (πœ‘ β†’ 𝐴 ∈ β„•)
 
Theoremzrtelqelz 41538 zsqrtelqelz 16699 generalized to positive integer roots. (Contributed by Steven Nguyen, 6-Apr-2023.)
((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„• ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ β„š) β†’ (𝐴↑𝑐(1 / 𝑁)) ∈ β„€)
 
Theoremzrtdvds 41539 A positive integer root divides its integer. (Contributed by Steven Nguyen, 6-Apr-2023.)
((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„• ∧ (𝐴↑𝑐(1 / 𝑁)) ∈ β„•) β†’ (𝐴↑𝑐(1 / 𝑁)) βˆ₯ 𝐴)
 
Theoremrtprmirr 41540 The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023.)
((𝑃 ∈ β„™ ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑃↑𝑐(1 / 𝑁)) ∈ (ℝ βˆ– β„š))
 
21.28.5  Real subtraction
 
Syntaxcresub 41541 Real number subtraction.
class βˆ’β„
 
Definitiondf-resub 41542* Define subtraction between real numbers. This operator saves a few axioms over df-sub 11451 in certain situations. Theorem resubval 41543 shows its value, resubadd 41555 relates it to addition, and rersubcl 41554 proves its closure. It is the restriction of df-sub 11451 to the reals: subresre 41606. (Contributed by Steven Nguyen, 7-Jan-2023.)
βˆ’β„ = (π‘₯ ∈ ℝ, 𝑦 ∈ ℝ ↦ (℩𝑧 ∈ ℝ (𝑦 + 𝑧) = π‘₯))
 
Theoremresubval 41543* Value of real subtraction, which is the (unique) real π‘₯ such that 𝐡 + π‘₯ = 𝐴. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 βˆ’β„ 𝐡) = (β„©π‘₯ ∈ ℝ (𝐡 + π‘₯) = 𝐴))
 
Theoremrenegeulemv 41544* Lemma for renegeu 41546 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.)
(πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ (𝐡 + 𝑦) = 𝐴)    β‡’   (πœ‘ β†’ βˆƒ!π‘₯ ∈ ℝ (𝐡 + π‘₯) = 𝐴)
 
Theoremrenegeulem 41545* Lemma for renegeu 41546 and similar. Remove a change in bound variables from renegeulemv 41544. (Contributed by Steven Nguyen, 28-Jan-2023.)
(πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ (𝐡 + 𝑦) = 𝐴)    β‡’   (πœ‘ β†’ βˆƒ!𝑦 ∈ ℝ (𝐡 + 𝑦) = 𝐴)
 
Theoremrenegeu 41546* Existential uniqueness of real negatives. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ β†’ βˆƒ!π‘₯ ∈ ℝ (𝐴 + π‘₯) = 0)
 
Theoremrernegcl 41547 Closure law for negative reals. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ β†’ (0 βˆ’β„ 𝐴) ∈ ℝ)
 
Theoremrenegadd 41548 Relationship between real negation and addition. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((0 βˆ’β„ 𝐴) = 𝐡 ↔ (𝐴 + 𝐡) = 0))
 
Theoremrenegid 41549 Addition of a real number and its negative. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ β†’ (𝐴 + (0 βˆ’β„ 𝐴)) = 0)
 
Theoremreneg0addlid 41550 Negative zero is a left additive identity. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ β†’ ((0 βˆ’β„ 0) + 𝐴) = 𝐴)
 
Theoremresubeulem1 41551 Lemma for resubeu 41553. A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023.)
(𝐴 ∈ ℝ β†’ (0 + (0 βˆ’β„ (0 + 0))) = (0 βˆ’β„ 0))
 
Theoremresubeulem2 41552 Lemma for resubeu 41553. A value which when added to 𝐴, results in 𝐡. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 + ((0 βˆ’β„ 𝐴) + ((0 βˆ’β„ (0 + 0)) + 𝐡))) = 𝐡)
 
Theoremresubeu 41553* Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ βˆƒ!π‘₯ ∈ ℝ (𝐴 + π‘₯) = 𝐡)
 
Theoremrersubcl 41554 Closure for real subtraction. Based on subcl 11464. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 βˆ’β„ 𝐡) ∈ ℝ)
 
Theoremresubadd 41555 Relation between real subtraction and addition. Based on subadd 11468. (Contributed by Steven Nguyen, 7-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 βˆ’β„ 𝐡) = 𝐢 ↔ (𝐡 + 𝐢) = 𝐴))
 
Theoremresubaddd 41556 Relationship between subtraction and addition. Based on subaddd 11594. (Contributed by Steven Nguyen, 8-Jan-2023.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    β‡’   (πœ‘ β†’ ((𝐴 βˆ’β„ 𝐡) = 𝐢 ↔ (𝐡 + 𝐢) = 𝐴))
 
Theoremresubf 41557 Real subtraction is an operation on the real numbers. Based on subf 11467. (Contributed by Steven Nguyen, 7-Jan-2023.)
βˆ’β„ :(ℝ Γ— ℝ)βŸΆβ„
 
Theoremrepncan2 41558 Addition and subtraction of equals. Compare pncan2 11472. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((𝐴 + 𝐡) βˆ’β„ 𝐴) = 𝐡)
 
Theoremrepncan3 41559 Addition and subtraction of equals. Based on pncan3 11473. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (𝐴 + (𝐡 βˆ’β„ 𝐴)) = 𝐡)
 
Theoremreaddsub 41560 Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 + 𝐡) βˆ’β„ 𝐢) = ((𝐴 βˆ’β„ 𝐢) + 𝐡))
 
Theoremreladdrsub 41561 Move LHS of a sum into RHS of a (real) difference. Version of mvlladdd 11630 with real subtraction. (Contributed by Steven Nguyen, 8-Jan-2023.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ (𝐴 + 𝐡) = 𝐢)    β‡’   (πœ‘ β†’ 𝐡 = (𝐢 βˆ’β„ 𝐴))
 
Theoremreltsub1 41562 Subtraction from both sides of 'less than'. Compare ltsub1 11715. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 < 𝐡 ↔ (𝐴 βˆ’β„ 𝐢) < (𝐡 βˆ’β„ 𝐢)))
 
Theoremreltsubadd2 41563 'Less than' relationship between addition and subtraction. Compare ltsubadd2 11690. (Contributed by SN, 13-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 βˆ’β„ 𝐡) < 𝐢 ↔ 𝐴 < (𝐡 + 𝐢)))
 
Theoremresubcan2 41564 Cancellation law for real subtraction. Compare subcan2 11490. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 βˆ’β„ 𝐢) = (𝐡 βˆ’β„ 𝐢) ↔ 𝐴 = 𝐡))
 
Theoremresubsub4 41565 Law for double subtraction. Compare subsub4 11498. (Contributed by Steven Nguyen, 14-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 βˆ’β„ 𝐡) βˆ’β„ 𝐢) = (𝐴 βˆ’β„ (𝐡 + 𝐢)))
 
Theoremrennncan2 41566 Cancellation law for real subtraction. Compare nnncan2 11502. (Contributed by Steven Nguyen, 14-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 βˆ’β„ 𝐢) βˆ’β„ (𝐡 βˆ’β„ 𝐢)) = (𝐴 βˆ’β„ 𝐡))
 
Theoremrenpncan3 41567 Cancellation law for real subtraction. Compare npncan3 11503. (Contributed by Steven Nguyen, 28-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 βˆ’β„ 𝐡) + (𝐢 βˆ’β„ 𝐴)) = (𝐢 βˆ’β„ 𝐡))
 
Theoremrepnpcan 41568 Cancellation law for addition and real subtraction. Compare pnpcan 11504. (Contributed by Steven Nguyen, 19-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 + 𝐡) βˆ’β„ (𝐴 + 𝐢)) = (𝐡 βˆ’β„ 𝐢))
 
Theoremreppncan 41569 Cancellation law for mixed addition and real subtraction. Compare ppncan 11507. (Contributed by SN, 3-Sep-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 + 𝐢) + (𝐡 βˆ’β„ 𝐢)) = (𝐴 + 𝐡))
 
Theoremresubidaddlidlem 41570 Lemma for resubidaddlid 41571. A special case of npncan 11486. (Contributed by Steven Nguyen, 8-Jan-2023.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ (𝐴 βˆ’β„ 𝐡) = (𝐡 βˆ’β„ 𝐢))    β‡’   (πœ‘ β†’ ((𝐴 βˆ’β„ 𝐡) + (𝐡 βˆ’β„ 𝐢)) = (𝐴 βˆ’β„ 𝐢))
 
Theoremresubidaddlid 41571 Any real number subtracted from itself forms a left additive identity. (Contributed by Steven Nguyen, 8-Jan-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ ((𝐴 βˆ’β„ 𝐴) + 𝐡) = 𝐡)
 
Theoremresubdi 41572 Distribution of multiplication over real subtraction. (Contributed by Steven Nguyen, 3-Jun-2023.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐴 Β· (𝐡 βˆ’β„ 𝐢)) = ((𝐴 Β· 𝐡) βˆ’β„ (𝐴 Β· 𝐢)))
 
Theoremre1m1e0m0 41573 Equality of two left-additive identities. See resubidaddlid 41571. Uses ax-i2m1 11181. (Contributed by SN, 25-Dec-2023.)
(1 βˆ’β„ 1) = (0 βˆ’β„ 0)
 
Theoremsn-00idlem1 41574 Lemma for sn-00id 41577. (Contributed by SN, 25-Dec-2023.)
(𝐴 ∈ ℝ β†’ (𝐴 Β· (0 βˆ’β„ 0)) = (𝐴 βˆ’β„ 𝐴))
 
Theoremsn-00idlem2 41575 Lemma for sn-00id 41577. (Contributed by SN, 25-Dec-2023.)
((0 βˆ’β„ 0) β‰  0 β†’ (0 βˆ’β„ 0) = 1)
 
Theoremsn-00idlem3 41576 Lemma for sn-00id 41577. (Contributed by SN, 25-Dec-2023.)
((0 βˆ’β„ 0) = 1 β†’ (0 + 0) = 0)
 
Theoremsn-00id 41577 00id 11394 proven without ax-mulcom 11177 but using ax-1ne0 11182. (Though note that the current version of 00id 11394 can be changed to avoid ax-icn 11172, ax-addcl 11173, ax-mulcl 11175, ax-i2m1 11181, ax-cnre 11186. Most of this is by using 0cnALT3 41477 instead of 0cn 11211). (Contributed by SN, 25-Dec-2023.) (Proof modification is discouraged.)
(0 + 0) = 0
 
Theoremre0m0e0 41578 Real number version of 0m0e0 12337 proven without ax-mulcom 11177. (Contributed by SN, 23-Jan-2024.)
(0 βˆ’β„ 0) = 0
 
Theoremreaddlid 41579 Real number version of addlid 11402. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ β†’ (0 + 𝐴) = 𝐴)
 
Theoremsn-addlid 41580 addlid 11402 without ax-mulcom 11177. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ β„‚ β†’ (0 + 𝐴) = 𝐴)
 
Theoremremul02 41581 Real number version of mul02 11397 proven without ax-mulcom 11177. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ β†’ (0 Β· 𝐴) = 0)
 
Theoremsn-0ne2 41582 0ne2 12424 without ax-mulcom 11177. (Contributed by SN, 23-Jan-2024.)
0 β‰  2
 
Theoremremul01 41583 Real number version of mul01 11398 proven without ax-mulcom 11177. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ β†’ (𝐴 Β· 0) = 0)
 
Theoremresubid 41584 Subtraction of a real number from itself (compare subid 11484). (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ β†’ (𝐴 βˆ’β„ 𝐴) = 0)
 
Theoremreaddrid 41585 Real number version of addrid 11399 without ax-mulcom 11177. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ β†’ (𝐴 + 0) = 𝐴)
 
Theoremresubid1 41586 Real number version of subid1 11485 without ax-mulcom 11177. (Contributed by SN, 23-Jan-2024.)
(𝐴 ∈ ℝ β†’ (𝐴 βˆ’β„ 0) = 𝐴)
 
Theoremrenegneg 41587 A real number is equal to the negative of its negative. Compare negneg 11515. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ β†’ (0 βˆ’β„ (0 βˆ’β„ 𝐴)) = 𝐴)
 
Theoremreaddcan2 41588 Commuted version of readdcan 11393 without ax-mulcom 11177. (Contributed by SN, 21-Feb-2024.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((𝐴 + 𝐢) = (𝐡 + 𝐢) ↔ 𝐴 = 𝐡))
 
Theoremrenegid2 41589 Commuted version of renegid 41549. (Contributed by SN, 4-May-2024.)
(𝐴 ∈ ℝ β†’ ((0 βˆ’β„ 𝐴) + 𝐴) = 0)
 
Theoremremulneg2d 41590 Product with negative is negative of product. (Contributed by SN, 25-Jan-2025.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ (𝐴 Β· (0 βˆ’β„ 𝐡)) = (0 βˆ’β„ (𝐴 Β· 𝐡)))
 
Theoremsn-it0e0 41591 Proof of it0e0 12439 without ax-mulcom 11177. Informally, a real number times 0 is 0, and βˆƒπ‘Ÿ ∈ β„π‘Ÿ = i Β· 𝑠 by ax-cnre 11186 and renegid2 41589. (Contributed by SN, 30-Apr-2024.)
(i Β· 0) = 0
 
Theoremsn-negex12 41592* A combination of cnegex 11400 and cnegex2 11401, this proof takes cnre 11216 𝐴 = π‘Ÿ + i Β· 𝑠 and shows that i Β· -𝑠 + -π‘Ÿ is both a left and right inverse. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ β„‚ β†’ βˆƒπ‘ ∈ β„‚ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0))
 
Theoremsn-negex 41593* Proof of cnegex 11400 without ax-mulcom 11177. (Contributed by SN, 30-Apr-2024.)
(𝐴 ∈ β„‚ β†’ βˆƒπ‘ ∈ β„‚ (𝐴 + 𝑏) = 0)
 
Theoremsn-negex2 41594* Proof of cnegex2 11401 without ax-mulcom 11177. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ β„‚ β†’ βˆƒπ‘ ∈ β„‚ (𝑏 + 𝐴) = 0)
 
Theoremsn-addcand 41595 addcand 11422 without ax-mulcom 11177. Note how the proof is almost identical to addcan 11403. (Contributed by SN, 5-May-2024.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) = (𝐴 + 𝐢) ↔ 𝐡 = 𝐢))
 
Theoremsn-addrid 41596 addrid 11399 without ax-mulcom 11177. (Contributed by SN, 5-May-2024.)
(𝐴 ∈ β„‚ β†’ (𝐴 + 0) = 𝐴)
 
Theoremsn-addcan2d 41597 addcan2d 11423 without ax-mulcom 11177. (Contributed by SN, 5-May-2024.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐢) = (𝐡 + 𝐢) ↔ 𝐴 = 𝐡))
 
Theoremreixi 41598 ixi 11848 without ax-mulcom 11177. (Contributed by SN, 5-May-2024.)
(i Β· i) = (0 βˆ’β„ 1)
 
Theoremrei4 41599 i4 14173 without ax-mulcom 11177. (Contributed by SN, 27-May-2024.)
((i Β· i) Β· (i Β· i)) = 1
 
Theoremsn-addid0 41600 A number that sums to itself is zero. Compare addid0 11638, readdridaddlidd 41481. (Contributed by SN, 5-May-2024.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ (𝐴 + 𝐴) = 𝐴)    β‡’   (πœ‘ β†’ 𝐴 = 0)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-47941
  Copyright terms: Public domain < Previous  Next >