| Metamath
Proof Explorer Theorem List (p. 416 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | islpolN 41501* | The predicate "is a polarity". (Contributed by NM, 24-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) | ||
| Theorem | islpoldN 41502* | Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) & ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) ⇒ ⊢ (𝜑 → ⊥ ∈ 𝑃) | ||
| Theorem | lpolfN 41503 | Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) ⇒ ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | ||
| Theorem | lpolvN 41504 | The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | ||
| Theorem | lpolconN 41505 | Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ⊆ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) | ||
| Theorem | lpolsatN 41506 | The polarity of an atomic subspace is a hyperplane. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘𝑄) ∈ 𝐻) | ||
| Theorem | lpolpolsatN 41507 | Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝑃 = (LPol‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → ⊥ ∈ 𝑃) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑄)) = 𝑄) | ||
| Theorem | dochpolN 41508 | The subspace orthocomplement for the DVecH vector space is a polarity. (Contributed by NM, 27-Dec-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑃 = (LPol‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ⊥ ∈ 𝑃) | ||
| Theorem | lcfl1lem 41509* | Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.) |
| ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) | ||
| Theorem | lcfl1 41510* | Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014.) |
| ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) | ||
| Theorem | lcfl2 41511* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ∨ (𝐿‘𝐺) = 𝑉))) | ||
| Theorem | lcfl3 41512* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘(𝐿‘𝐺)) ∈ 𝐴 ∨ (𝐿‘𝐺) = 𝑉))) | ||
| Theorem | lcfl4N 41513* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑌 = (LSHyp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ∈ 𝑌 ∨ (𝐿‘𝐺) = 𝑉))) | ||
| Theorem | lcfl5 41514* | Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
| Theorem | lcfl5a 41515 | Property of a functional with a closed kernel. TODO: Make lcfl5 41514 etc. obsolete and rewrite without 𝐶 hypothesis? (Contributed by NM, 29-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ (𝐿‘𝐺) ∈ ran 𝐼)) | ||
| Theorem | lcfl6lem 41516* | Lemma for lcfl6 41518. A functional 𝐺 (whose kernel is closed by dochsnkr 41490) is completely determined by a vector 𝑋 in the orthocomplement in its kernel at which the functional value is 1. Note that the ∖ { 0 } in the 𝑋 hypothesis is redundant by the last hypothesis but allows easier use of other theorems. (Contributed by NM, 3-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) & ⊢ (𝜑 → (𝐺‘𝑋) = 1 ) ⇒ ⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) | ||
| Theorem | lcfl7lem 41517* | Lemma for lcfl7N 41519. If two functionals 𝐺 and 𝐽 are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) & ⊢ 𝐽 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌)))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 = 𝐽) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | lcfl6 41518* | Property of a functional with a closed kernel. Note that (𝐿‘𝐺) = 𝑉 means the functional is zero by lkr0f 39112. (Contributed by NM, 3-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ((𝐿‘𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))) | ||
| Theorem | lcfl7N 41519* | Property of a functional with a closed kernel. Every nonzero functional is determined by a unique nonzero vector. Note that (𝐿‘𝐺) = 𝑉 means the functional is zero by lkr0f 39112. (Contributed by NM, 4-Jan-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ((𝐿‘𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))) | ||
| Theorem | lcfl8 41520* | Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}))) | ||
| Theorem | lcfl8a 41521* | Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ ∃𝑥 ∈ 𝑉 (𝐿‘𝐺) = ( ⊥ ‘{𝑥}))) | ||
| Theorem | lcfl8b 41522* | Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑌 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 ∖ {𝑌})) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ⊥ ‘(𝐿‘𝐺)) = (𝑁‘{𝑥})) | ||
| Theorem | lcfl9a 41523 | Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) | ||
| Theorem | lclkrlem1 41524* | The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) | ||
| Theorem | lclkrlem2a 41525 | Lemma for lclkr 41551. Use lshpat 39074 to show that the intersection of a hyperplane with a noncomparable sum of atoms is an atom. (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{𝐵})) ⇒ ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) | ||
| Theorem | lclkrlem2b 41526 | Lemma for lclkr 41551. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) ⇒ ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) ∩ ( ⊥ ‘{𝐵})) ∈ 𝐴) | ||
| Theorem | lclkrlem2c 41527 | Lemma for lclkr 41551. (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ 𝐽 = (LSHyp‘𝑈) ⇒ ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ 𝐽) | ||
| Theorem | lclkrlem2d 41528 | Lemma for lclkr 41551. (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) ⇒ ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ ran 𝐼) | ||
| Theorem | lclkrlem2e 41529 | Lemma for lclkr 41551. The kernel of the sum is closed when the kernels of the summands are equal and closed. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐸) = (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2f 41530 | Lemma for lclkr 41551. Construct a closed hyperplane under the kernel of the sum. (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) & ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) ⇒ ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ⊆ (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2g 41531 | Lemma for lclkr 41551. Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) & ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2h 41532 | Lemma for lclkr 41551. Eliminate the (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽 hypothesis. (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2i 41533 | Lemma for lclkr 41551. Eliminate the (𝐿‘𝐸) ≠ (𝐿‘𝐺) hypothesis. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2j 41534 | Lemma for lclkr 41551. Kernel closure when 𝑌 is zero. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 = 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2k 41535 | Lemma for lclkr 41551. Kernel closure when 𝑋 is zero. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 = 0 ) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2l 41536 | Lemma for lclkr 41551. Eliminate the 𝑋 ≠ 0, 𝑌 ≠ 0 hypotheses. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐽 = (LSHyp‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) & ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2m 41537 | Lemma for lclkr 41551. Construct a vector 𝐵 that makes the sum of functionals zero. Combine with 𝐵 ∈ 𝑉 to shorten overall proof. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐵 ∈ 𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 )) | ||
| Theorem | lclkrlem2n 41538 | Lemma for lclkr 41551. (Contributed by NM, 12-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2o 41539 | Lemma for lclkr 41551. When 𝐵 is nonzero, the vectors 𝑋 and 𝑌 can't both belong to the hyperplane generated by 𝐵. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑈)) ⇒ ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) | ||
| Theorem | lclkrlem2p 41540 | Lemma for lclkr 41551. When 𝐵 is zero, 𝑋 and 𝑌 must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑌}) ⊆ ( ⊥ ‘{𝑋})) | ||
| Theorem | lclkrlem2q 41541 | Lemma for lclkr 41551. The sum has a closed kernel when 𝐵 is nonzero. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 ≠ (0g‘𝑈)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2r 41542 | Lemma for lclkr 41551. When 𝐵 is zero, i.e. when 𝑋 and 𝑌 are colinear, the intersection of the kernels of 𝐸 and 𝐺 equal the kernel of 𝐺, so the kernels of 𝐺 and the sum are comparable. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2s 41543 | Lemma for lclkr 41551. Thus, the sum has a closed kernel when 𝐵 is zero. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) & ⊢ (𝜑 → 𝐵 = (0g‘𝑈)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2t 41544 | Lemma for lclkr 41551. We eliminate all hypotheses with 𝐵 here. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2u 41545 | Lemma for lclkr 41551. lclkrlem2t 41544 with 𝑋 and 𝑌 swapped. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) ≠ 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2v 41546 | Lemma for lclkr 41551. When the hypotheses of lclkrlem2u 41545 and lclkrlem2u 41545 are negated, the functional sum must be zero, so the kernel is the vector space. We make use of the law of excluded middle, dochexmid 41486, which requires the orthomodular law dihoml4 41395 (Lemma 3.3 of [Holland95] p. 214). (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) ⇒ ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = 𝑉) | ||
| Theorem | lclkrlem2w 41547 | Lemma for lclkr 41551. This is the same as lclkrlem2u 41545 and lclkrlem2u 41545 with the inequality hypotheses negated. When the sum of two functionals is zero at each generating vector, the kernel is the vector space and therefore closed. (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ − = (-g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) & ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2x 41548 | Lemma for lclkr 41551. Eliminate by cases the hypotheses of lclkrlem2u 41545, lclkrlem2u 41545 and lclkrlem2w 41547. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) & ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2y 41549 | Lemma for lclkr 41551. Restate the hypotheses for 𝐸 and 𝐺 to say their kernels are closed, in order to eliminate the generating vectors 𝑋 and 𝑌. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐸))) = (𝐿‘𝐸)) & ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) ⇒ ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | ||
| Theorem | lclkrlem2 41550* | The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a 41525 through lclkrlem2y 41549 are used for the proof. Here we express lclkrlem2y 41549 in terms of membership in the set 𝐶 of functionals with closed kernels. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ + = (+g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐸 ∈ 𝐶) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐶) | ||
| Theorem | lclkr 41551* | The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of [Holland95] p. 218, line 20, stating "The fM that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝑆) | ||
| Theorem | lcfls1lem 41552* | Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) |
| ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) | ||
| Theorem | lcfls1N 41553* | Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.) |
| ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄))) | ||
| Theorem | lcfls1c 41554* | Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.) |
| ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ 𝐷 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⇒ ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐷 ∧ ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑄)) | ||
| Theorem | lclkrslem1 41555* | The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. (Contributed by NM, 27-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐶) | ||
| Theorem | lclkrslem2 41556* | The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. (Contributed by NM, 28-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑄)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝐸 ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐶) | ||
| Theorem | lclkrs 41557* | The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑅 is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 41551 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 41551 a special case of this? (Contributed by NM, 29-Jan-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑇 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝑇) | ||
| Theorem | lclkrs2 41558* | The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is a subspace of the dual space containing functionals with closed kernels. Note that 𝑅 is the value given by mapdval 41646. (Contributed by NM, 12-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑇 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝑅 = {𝑔 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑔))) = (𝐿‘𝑔) ∧ ( ⊥ ‘(𝐿‘𝑔)) ⊆ 𝑄)} & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑄 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑅 ∈ 𝑇 ∧ 𝑅 ⊆ 𝐶)) | ||
| Theorem | lcfrvalsnN 41559* | Reconstruction from the dual space span of a singleton. (Contributed by NM, 19-Feb-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑁 = (LSpan‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ 𝑄 = ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑓)) & ⊢ 𝑅 = (𝑁‘{𝐺}) ⇒ ⊢ (𝜑 → 𝑄 = ( ⊥ ‘(𝐿‘𝐺))) | ||
| Theorem | lcfrlem1 41560 | Lemma for lcfr 41603. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) & ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ⇒ ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) | ||
| Theorem | lcfrlem2 41561 | Lemma for lcfr 41603. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) & ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) & ⊢ 𝐿 = (LKer‘𝑈) ⇒ ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘𝐻)) | ||
| Theorem | lcfrlem3 41562 | Lemma for lcfr 41603. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ × = (.r‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐼 = (invr‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑈 ∈ LVec) & ⊢ (𝜑 → 𝐸 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) & ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) & ⊢ 𝐿 = (LKer‘𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) | ||
| Theorem | lcfrlem4 41563* | Lemma for lcfr 41603. (Contributed by NM, 10-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑉) | ||
| Theorem | lcfrlem5 41564* | Lemma for lcfr 41603. The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ 𝑄 = ∪ 𝑓 ∈ 𝑅 ( ⊥ ‘(𝐿‘𝑓)) & ⊢ (𝜑 → 𝑋 ∈ 𝑄) & ⊢ 𝐶 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑄) | ||
| Theorem | lcfrlem6 41565* | Lemma for lcfr 41603. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
| Theorem | lcfrlem7 41566* | Lemma for lcfr 41603. Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑌 = 0 ) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
| Theorem | lcfrlem8 41567* | Lemma for lcf1o 41569 and lcfr 41603. (Contributed by NM, 21-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐽‘𝑋) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))) | ||
| Theorem | lcfrlem9 41568* | Lemma for lcf1o 41569. (This part has undesirable $d's on 𝐽 and 𝜑 that we remove in lcf1o 41569.) TODO: ugly proof; maybe have better subtheorems or abbreviate some ℩𝑘 expansions with 𝐽‘𝑧? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) | ||
| Theorem | lcf1o 41569* | Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄})) | ||
| Theorem | lcfrlem10 41570* | Lemma for lcfr 41603. (Contributed by NM, 23-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐽‘𝑋) ∈ 𝐹) | ||
| Theorem | lcfrlem11 41571* | Lemma for lcfr 41603. (Contributed by NM, 23-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘(𝐽‘𝑋)) = ( ⊥ ‘{𝑋})) | ||
| Theorem | lcfrlem12N 41572* | Lemma for lcfr 41603. (Contributed by NM, 23-Feb-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝐵 = (0g‘𝑆) & ⊢ (𝜑 → 𝑌 ∈ ( ⊥ ‘{𝑋})) ⇒ ⊢ (𝜑 → ((𝐽‘𝑋)‘𝑌) = 𝐵) | ||
| Theorem | lcfrlem13 41573* | Lemma for lcfr 41603. (Contributed by NM, 8-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐽‘𝑋) ∈ (𝐶 ∖ {𝑄})) | ||
| Theorem | lcfrlem14 41574* | Lemma for lcfr 41603. (Contributed by NM, 10-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝑁 = (LSpan‘𝑈) ⇒ ⊢ (𝜑 → ( ⊥ ‘(𝐿‘(𝐽‘𝑋))) = (𝑁‘{𝑋})) | ||
| Theorem | lcfrlem15 41575* | Lemma for lcfr 41603. (Contributed by NM, 9-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑋)))) | ||
| Theorem | lcfrlem16 41576* | Lemma for lcfr 41603. (Contributed by NM, 8-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (0g‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑃 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝐺 ∈ 𝑃) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ (𝐸 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐽‘𝑋) ∈ 𝐺) | ||
| Theorem | lcfrlem17 41577 | Lemma for lcfr 41603. Condition needed more than once. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) | ||
| Theorem | lcfrlem18 41578 | Lemma for lcfr 41603. (Contributed by NM, 24-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋, 𝑌}) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) | ||
| Theorem | lcfrlem19 41579 | Lemma for lcfr 41603. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}))) | ||
| Theorem | lcfrlem20 41580 | Lemma for lcfr 41603. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) | ||
| Theorem | lcfrlem21 41581 | Lemma for lcfr 41603. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) | ||
| Theorem | lcfrlem22 41582 | Lemma for lcfr 41603. (Contributed by NM, 24-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝐴) | ||
| Theorem | lcfrlem23 41583 | Lemma for lcfr 41603. TODO: this proof was built from other proof pieces that may change 𝑁‘{𝑋, 𝑌} into subspace sum and back unnecessarily, or similar things. (Contributed by NM, 1-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ ⊕ = (LSSum‘𝑈) ⇒ ⊢ (𝜑 → (( ⊥ ‘{𝑋, 𝑌}) ⊕ 𝐵) = ( ⊥ ‘{(𝑋 + 𝑌)})) | ||
| Theorem | lcfrlem24 41584* | Lemma for lcfr 41603. (Contributed by NM, 24-Feb-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) ⇒ ⊢ (𝜑 → ( ⊥ ‘{𝑋, 𝑌}) = ((𝐿‘(𝐽‘𝑋)) ∩ (𝐿‘(𝐽‘𝑌)))) | ||
| Theorem | lcfrlem25 41585* | Lemma for lcfr 41603. Special case of lcfrlem35 41595 when ((𝐽‘𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) & ⊢ (𝜑 → 𝐼 ≠ 0 ) ⇒ ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = (𝐿‘(𝐽‘𝑌))) | ||
| Theorem | lcfrlem26 41586* | Lemma for lcfr 41603. Special case of lcfrlem36 41596 when ((𝐽‘𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) & ⊢ (𝜑 → 𝐼 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘(𝐽‘𝑌)))) | ||
| Theorem | lcfrlem27 41587* | Lemma for lcfr 41603. Special case of lcfrlem37 41597 when ((𝐽‘𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) = 𝑄) & ⊢ (𝜑 → 𝐼 ≠ 0 ) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) & ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
| Theorem | lcfrlem28 41588* | Lemma for lcfr 41603. TODO: This can be a hypothesis since the zero version of (𝐽‘𝑌)‘𝐼 needs it. (Contributed by NM, 9-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) ⇒ ⊢ (𝜑 → 𝐼 ≠ 0 ) | ||
| Theorem | lcfrlem29 41589* | Lemma for lcfr 41603. (Contributed by NM, 9-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) ⇒ ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) ∈ 𝑅) | ||
| Theorem | lcfrlem30 41590* | Lemma for lcfr 41603. (Contributed by NM, 6-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ⇒ ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) | ||
| Theorem | lcfrlem31 41591* | Lemma for lcfr 41603. (Contributed by NM, 10-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) & ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) & ⊢ (𝜑 → 𝐶 = (0g‘𝐷)) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | ||
| Theorem | lcfrlem32 41592* | Lemma for lcfr 41603. (Contributed by NM, 10-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) & ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) ≠ 𝑄) ⇒ ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) | ||
| Theorem | lcfrlem33 41593* | Lemma for lcfr 41603. (Contributed by NM, 10-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) & ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) = 𝑄) ⇒ ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) | ||
| Theorem | lcfrlem34 41594* | Lemma for lcfr 41603. (Contributed by NM, 10-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ⇒ ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) | ||
| Theorem | lcfrlem35 41595* | Lemma for lcfr 41603. (Contributed by NM, 2-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ⇒ ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = (𝐿‘𝐶)) | ||
| Theorem | lcfrlem36 41596* | Lemma for lcfr 41603. (Contributed by NM, 6-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) | ||
| Theorem | lcfrlem37 41597* | Lemma for lcfr 41603. (Contributed by NM, 8-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐴 = (LSAtoms‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑄 = (0g‘𝑆) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) & ⊢ 𝐹 = (invr‘𝑆) & ⊢ − = (-g‘𝐷) & ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) & ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝐷)) & ⊢ (𝜑 → 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
| Theorem | lcfrlem38 41598* | Lemma for lcfr 41603. Combine lcfrlem27 41587 and lcfrlem37 41597. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ≠ 0 ) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = (Scalar‘𝑈) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
| Theorem | lcfrlem39 41599* | Lemma for lcfr 41603. Eliminate 𝐽. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
| Theorem | lcfrlem40 41600* | Lemma for lcfr 41603. Eliminate 𝐵 and 𝐼. (Contributed by NM, 11-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝐿 = (LKer‘𝑈) & ⊢ 𝐷 = (LDual‘𝑈) & ⊢ 𝑄 = (LSubSp‘𝐷) & ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} & ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑄) & ⊢ (𝜑 → 𝐺 ⊆ 𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ (𝜑 → 𝑌 ∈ 𝐸) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |