MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0orvALT Structured version   Visualization version   GIF version

Theorem ab0orvALT 4390
Description: Alternate proof of ab0orv 4389, shorter but using more axioms. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ab0orvALT ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ab0orvALT
StepHypRef Expression
1 nfv 1912 . 2 𝑥𝜑
2 dfnf5 4388 . 2 (Ⅎ𝑥𝜑 ↔ ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
31, 2mpbi 230 1 ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1537  wnf 1780  {cab 2712  Vcvv 3478  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-v 3480  df-dif 3966  df-nul 4340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator