MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0orvALT Structured version   Visualization version   GIF version

Theorem ab0orvALT 4331
Description: Alternate proof of ab0orv 4330, shorter but using more axioms. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ab0orvALT ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ab0orvALT
StepHypRef Expression
1 nfv 1915 . 2 𝑥𝜑
2 dfnf5 4329 . 2 (Ⅎ𝑥𝜑 ↔ ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
31, 2mpbi 230 1 ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1541  wnf 1784  {cab 2709  Vcvv 3436  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-v 3438  df-dif 3900  df-nul 4281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator