Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ab0orvALT | Structured version Visualization version GIF version |
Description: Alternate proof of ab0orv 4309, shorter but using more axioms. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ab0orvALT | ⊢ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | dfnf5 4308 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 = wceq 1539 Ⅎwnf 1787 {cab 2715 Vcvv 3422 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-v 3424 df-dif 3886 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |