| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ab0orvALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of ab0orv 4365, shorter but using more axioms. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ab0orvALT | ⊢ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | dfnf5 4364 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1539 Ⅎwnf 1782 {cab 2712 Vcvv 3464 ∅c0 4315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-v 3466 df-dif 3936 df-nul 4316 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |