| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty class abstraction. See also ab0 4346. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) Avoid df-clel 2804, ax-8 2111. (Revised by GG, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| abn0 | ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4346 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥 ¬ 𝜑) |
| 3 | df-ne 2927 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ¬ {𝑥 ∣ 𝜑} = ∅) | |
| 4 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2708 ≠ wne 2926 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-ne 2927 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: intexab 5304 iinexg 5306 relimasn 6059 inisegn0 6072 mapprc 8806 modom 9198 tz9.1c 9690 scott0 9846 scott0s 9848 cp 9851 karden 9855 acnrcl 10002 aceq3lem 10080 cff 10208 cff1 10218 cfss 10225 domtriomlem 10402 axdclem 10479 nqpr 10974 supadd 12158 supmul 12162 hashf1lem2 14428 hashf1 14429 mreiincl 17564 efgval 19654 efger 19655 birthdaylem3 26870 disjex 32528 disjexc 32529 mppsval 35566 mblfinlem3 37660 ismblfin 37662 itg2addnc 37675 sdclem1 37744 upbdrech 45310 |
| Copyright terms: Public domain | W3C validator |