| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty class abstraction. See also ab0 4327. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) Avoid df-clel 2806, ax-8 2113. (Revised by GG, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| abn0 | ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4327 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥 ¬ 𝜑) |
| 3 | df-ne 2929 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ¬ {𝑥 ∣ 𝜑} = ∅) | |
| 4 | df-ex 1781 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 {cab 2709 ≠ wne 2928 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: intexab 5282 iinexg 5284 inisegn0 6046 mapprc 8754 modom 9135 tz9.1c 9620 scott0 9779 scott0s 9781 cp 9784 karden 9788 acnrcl 9933 aceq3lem 10011 cff 10139 cff1 10149 cfss 10156 domtriomlem 10333 axdclem 10410 nqpr 10905 supadd 12090 supmul 12094 hashf1lem2 14363 hashf1 14364 mreiincl 17498 efgval 19629 efger 19630 birthdaylem3 26890 disjex 32572 disjexc 32573 axregs 35145 mppsval 35616 mblfinlem3 37707 ismblfin 37709 itg2addnc 37722 sdclem1 37791 upbdrech 45354 |
| Copyright terms: Public domain | W3C validator |