Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abn0 | Structured version Visualization version GIF version |
Description: Nonempty class abstraction. See also ab0 4305. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) Avoid df-clel 2817, ax-8 2110. (Revised by Gino Giotto, 30-Aug-2024.) |
Ref | Expression |
---|---|
abn0 | ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4305 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 319 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥 ¬ 𝜑) |
3 | df-ne 2943 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ¬ {𝑥 ∣ 𝜑} = ∅) | |
4 | df-ex 1784 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 {cab 2715 ≠ wne 2942 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-ne 2943 df-dif 3886 df-nul 4254 |
This theorem is referenced by: intexab 5258 iinexg 5260 relimasn 5981 inisegn0 5995 mapprc 8577 modom 8953 tz9.1c 9419 scott0 9575 scott0s 9577 cp 9580 karden 9584 acnrcl 9729 aceq3lem 9807 cff 9935 cff1 9945 cfss 9952 domtriomlem 10129 axdclem 10206 nqpr 10701 supadd 11873 supmul 11877 hashf1lem2 14098 hashf1 14099 mreiincl 17222 efgval 19238 efger 19239 birthdaylem3 26008 disjex 30832 disjexc 30833 mppsval 33434 mblfinlem3 35743 ismblfin 35745 itg2addnc 35758 sdclem1 35828 upbdrech 42734 |
Copyright terms: Public domain | W3C validator |