| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty class abstraction. See also ab0 4343. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) Avoid df-clel 2803, ax-8 2111. (Revised by GG, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| abn0 | ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4343 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥 ¬ 𝜑) |
| 3 | df-ne 2926 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ¬ {𝑥 ∣ 𝜑} = ∅) | |
| 4 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2707 ≠ wne 2925 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-ne 2926 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: intexab 5301 iinexg 5303 relimasn 6056 inisegn0 6069 mapprc 8803 modom 9191 tz9.1c 9683 scott0 9839 scott0s 9841 cp 9844 karden 9848 acnrcl 9995 aceq3lem 10073 cff 10201 cff1 10211 cfss 10218 domtriomlem 10395 axdclem 10472 nqpr 10967 supadd 12151 supmul 12155 hashf1lem2 14421 hashf1 14422 mreiincl 17557 efgval 19647 efger 19648 birthdaylem3 26863 disjex 32521 disjexc 32522 mppsval 35559 mblfinlem3 37653 ismblfin 37655 itg2addnc 37668 sdclem1 37737 upbdrech 45303 |
| Copyright terms: Public domain | W3C validator |