![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abn0 | Structured version Visualization version GIF version |
Description: Nonempty class abstraction. See also ab0 4402. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) Avoid df-clel 2819, ax-8 2110. (Revised by GG, 30-Aug-2024.) |
Ref | Expression |
---|---|
abn0 | ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4402 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥 ¬ 𝜑) |
3 | df-ne 2947 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ¬ {𝑥 ∣ 𝜑} = ∅) | |
4 | df-ex 1778 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 {cab 2717 ≠ wne 2946 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-ne 2947 df-dif 3979 df-nul 4353 |
This theorem is referenced by: intexab 5364 iinexg 5366 relimasn 6114 inisegn0 6128 mapprc 8888 modom 9307 tz9.1c 9799 scott0 9955 scott0s 9957 cp 9960 karden 9964 acnrcl 10111 aceq3lem 10189 cff 10317 cff1 10327 cfss 10334 domtriomlem 10511 axdclem 10588 nqpr 11083 supadd 12263 supmul 12267 hashf1lem2 14505 hashf1 14506 mreiincl 17654 efgval 19759 efger 19760 birthdaylem3 27014 disjex 32614 disjexc 32615 mppsval 35540 mblfinlem3 37619 ismblfin 37621 itg2addnc 37634 sdclem1 37703 upbdrech 45220 |
Copyright terms: Public domain | W3C validator |