Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abn0 | Structured version Visualization version GIF version |
Description: Nonempty class abstraction. See also ab0 4308. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 30-Aug-2024.) |
Ref | Expression |
---|---|
abn0 | ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ab0 4308 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥 ¬ 𝜑) |
3 | df-ne 2944 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ¬ {𝑥 ∣ 𝜑} = ∅) | |
4 | df-ex 1783 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 {cab 2715 ≠ wne 2943 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-ne 2944 df-dif 3890 df-nul 4257 |
This theorem is referenced by: intexab 5263 iinexg 5265 relimasn 5992 inisegn0 6006 mapprc 8619 modom 9023 tz9.1c 9488 scott0 9644 scott0s 9646 cp 9649 karden 9653 acnrcl 9798 aceq3lem 9876 cff 10004 cff1 10014 cfss 10021 domtriomlem 10198 axdclem 10275 nqpr 10770 supadd 11943 supmul 11947 hashf1lem2 14170 hashf1 14171 mreiincl 17305 efgval 19323 efger 19324 birthdaylem3 26103 disjex 30931 disjexc 30932 mppsval 33534 mblfinlem3 35816 ismblfin 35818 itg2addnc 35831 sdclem1 35901 upbdrech 42844 |
Copyright terms: Public domain | W3C validator |