| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty class abstraction. See also ab0 4339. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) Avoid df-clel 2803, ax-8 2111. (Revised by GG, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| abn0 | ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 4339 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ {𝑥 ∣ 𝜑} = ∅ ↔ ¬ ∀𝑥 ¬ 𝜑) |
| 3 | df-ne 2926 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ¬ {𝑥 ∣ 𝜑} = ∅) | |
| 4 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2707 ≠ wne 2925 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-ne 2926 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: intexab 5296 iinexg 5298 relimasn 6045 inisegn0 6058 mapprc 8780 modom 9167 tz9.1c 9659 scott0 9815 scott0s 9817 cp 9820 karden 9824 acnrcl 9971 aceq3lem 10049 cff 10177 cff1 10187 cfss 10194 domtriomlem 10371 axdclem 10448 nqpr 10943 supadd 12127 supmul 12131 hashf1lem2 14397 hashf1 14398 mreiincl 17533 efgval 19623 efger 19624 birthdaylem3 26839 disjex 32494 disjexc 32495 mppsval 35532 mblfinlem3 37626 ismblfin 37628 itg2addnc 37641 sdclem1 37710 upbdrech 45276 |
| Copyright terms: Public domain | W3C validator |