MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnf5 Structured version   Visualization version   GIF version

Theorem dfnf5 4311
Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.)
Assertion
Ref Expression
dfnf5 (Ⅎ𝑥𝜑 ↔ ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))

Proof of Theorem dfnf5
StepHypRef Expression
1 nf3 1789 . 2 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
2 abv 3443 . . 3 ({𝑥𝜑} = V ↔ ∀𝑥𝜑)
3 ab0 4308 . . 3 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
42, 3orbi12i 912 . 2 (({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
51, 4bitr4i 277 1 (Ⅎ𝑥𝜑 ↔ ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 844  wal 1537   = wceq 1539  wnf 1786  {cab 2715  Vcvv 3432  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-v 3434  df-dif 3890  df-nul 4257
This theorem is referenced by:  ab0orvALT  4313
  Copyright terms: Public domain W3C validator