MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnf5 Structured version   Visualization version   GIF version

Theorem dfnf5 4308
Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.)
Assertion
Ref Expression
dfnf5 (Ⅎ𝑥𝜑 ↔ ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))

Proof of Theorem dfnf5
StepHypRef Expression
1 nf3 1790 . 2 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
2 abv 3433 . . 3 ({𝑥𝜑} = V ↔ ∀𝑥𝜑)
3 ab0 4305 . . 3 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
42, 3orbi12i 911 . 2 (({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
51, 4bitr4i 277 1 (Ⅎ𝑥𝜑 ↔ ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 843  wal 1537   = wceq 1539  wnf 1787  {cab 2715  Vcvv 3422  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-v 3424  df-dif 3886  df-nul 4254
This theorem is referenced by:  ab0orvALT  4310
  Copyright terms: Public domain W3C validator