| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnf5 | Structured version Visualization version GIF version | ||
| Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.) |
| Ref | Expression |
|---|---|
| dfnf5 | ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf3 1785 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 2 | abv 3476 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | |
| 3 | ab0 4362 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
| 4 | 2, 3 | orbi12i 914 | . 2 ⊢ (({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 ∀wal 1537 = wceq 1539 Ⅎwnf 1782 {cab 2712 Vcvv 3464 ∅c0 4315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-v 3466 df-dif 3936 df-nul 4316 |
| This theorem is referenced by: ab0orvALT 4366 |
| Copyright terms: Public domain | W3C validator |