| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnf5 | Structured version Visualization version GIF version | ||
| Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.) |
| Ref | Expression |
|---|---|
| dfnf5 | ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf3 1787 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 2 | abv 3448 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | |
| 3 | ab0 4327 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
| 4 | 2, 3 | orbi12i 914 | . 2 ⊢ (({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 {cab 2709 Vcvv 3436 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-v 3438 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: ab0orvALT 4331 |
| Copyright terms: Public domain | W3C validator |