Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfnf5 | Structured version Visualization version GIF version |
Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.) |
Ref | Expression |
---|---|
dfnf5 | ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf3 1790 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
2 | abv 3433 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | |
3 | ab0 4305 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
4 | 2, 3 | orbi12i 911 | . 2 ⊢ (({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 843 ∀wal 1537 = wceq 1539 Ⅎwnf 1787 {cab 2715 Vcvv 3422 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-v 3424 df-dif 3886 df-nul 4254 |
This theorem is referenced by: ab0orvALT 4310 |
Copyright terms: Public domain | W3C validator |