Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfnf5 | Structured version Visualization version GIF version |
Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.) |
Ref | Expression |
---|---|
dfnf5 | ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf3 1789 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
2 | abv 3443 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = V ↔ ∀𝑥𝜑) | |
3 | ab0 4308 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) | |
4 | 2, 3 | orbi12i 912 | . 2 ⊢ (({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ({𝑥 ∣ 𝜑} = V ∨ {𝑥 ∣ 𝜑} = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 844 ∀wal 1537 = wceq 1539 Ⅎwnf 1786 {cab 2715 Vcvv 3432 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-v 3434 df-dif 3890 df-nul 4257 |
This theorem is referenced by: ab0orvALT 4313 |
Copyright terms: Public domain | W3C validator |