Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abeqabi Structured version   Visualization version   GIF version

Theorem abeqabi 42149
Description: Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024.)
Hypothesis
Ref Expression
abeqabi.a 𝐴 = {𝑥𝜓}
Assertion
Ref Expression
abeqabi ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem abeqabi
StepHypRef Expression
1 abeqabi.a . . 3 𝐴 = {𝑥𝜓}
21eqeq2i 2745 . 2 ({𝑥𝜑} = 𝐴 ↔ {𝑥𝜑} = {𝑥𝜓})
3 abbib 2804 . 2 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
42, 3bitri 274 1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539   = wceq 1541  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724
This theorem is referenced by:  abpr  42150  abtp  42151
  Copyright terms: Public domain W3C validator