Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abeqabi Structured version   Visualization version   GIF version

Theorem abeqabi 43365
Description: Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024.)
Hypothesis
Ref Expression
abeqabi.a 𝐴 = {𝑥𝜓}
Assertion
Ref Expression
abeqabi ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem abeqabi
StepHypRef Expression
1 abeqabi.a . . 3 𝐴 = {𝑥𝜓}
21eqeq2i 2753 . 2 ({𝑥𝜑} = 𝐴 ↔ {𝑥𝜑} = {𝑥𝜓})
3 abbib 2814 . 2 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
42, 3bitri 275 1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732
This theorem is referenced by:  abpr  43366  abtp  43367
  Copyright terms: Public domain W3C validator