Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omltoe Structured version   Visualization version   GIF version

Theorem omltoe 43380
Description: Exponentiation eventually dominates multiplication. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
omltoe ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴)))

Proof of Theorem omltoe
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
21adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 𝐵 ∈ On)
3 oe2 43379 . . . . 5 (𝐵 ∈ On → (𝐵 ·o 𝐵) = (𝐵o 2o))
42, 3syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐵) = (𝐵o 2o))
5 2on 8408 . . . . . . . . 9 2o ∈ On
65a1i 11 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 2o ∈ On)
7 simpl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
86, 7, 13jca 1128 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
98adantr 480 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
10 simpr 484 . . . . . . . . 9 ((1o𝐴𝐴𝐵) → 𝐴𝐵)
1110adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 𝐴𝐵)
1211ne0d 4295 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 𝐵 ≠ ∅)
13 on0eln0 6368 . . . . . . . 8 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
142, 13syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (∅ ∈ 𝐵𝐵 ≠ ∅))
1512, 14mpbird 257 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → ∅ ∈ 𝐵)
169, 15jca 511 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → ((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵))
17 df-2o 8396 . . . . . . 7 2o = suc 1o
1817a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o = suc 1o)
19 simpl 482 . . . . . . . . 9 ((1o𝐴𝐴𝐵) → 1o𝐴)
2019adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 1o𝐴)
21 eloni 6321 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
2221adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
2322adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → Ord 𝐴)
2420, 23jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (1o𝐴 ∧ Ord 𝐴))
25 ordelsuc 7759 . . . . . . . 8 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 ↔ suc 1o𝐴))
2625biimpd 229 . . . . . . 7 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 → suc 1o𝐴))
2724, 20, 26sylc 65 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → suc 1o𝐴)
2818, 27eqsstrd 3972 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o𝐴)
29 oewordi 8516 . . . . 5 (((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (2o𝐴 → (𝐵o 2o) ⊆ (𝐵o 𝐴)))
3016, 28, 29sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵o 2o) ⊆ (𝐵o 𝐴))
314, 30eqsstrd 3972 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐵) ⊆ (𝐵o 𝐴))
322, 2, 15jca31 514 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → ((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵))
33 omordi 8491 . . . 4 (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (𝐴𝐵 → (𝐵 ·o 𝐴) ∈ (𝐵 ·o 𝐵)))
3432, 11, 33sylc 65 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐴) ∈ (𝐵 ·o 𝐵))
3531, 34sseldd 3938 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴))
3635ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3905  c0 4286  Ord word 6310  Oncon0 6311  suc csuc 6313  (class class class)co 7353  1oc1o 8388  2oc2o 8389   ·o comu 8393  o coe 8394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-oexp 8401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator