Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omltoe Structured version   Visualization version   GIF version

Theorem omltoe 43413
Description: Exponentiation eventually dominates multiplication. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
omltoe ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴)))

Proof of Theorem omltoe
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
21adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 𝐵 ∈ On)
3 oe2 43412 . . . . 5 (𝐵 ∈ On → (𝐵 ·o 𝐵) = (𝐵o 2o))
42, 3syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐵) = (𝐵o 2o))
5 2on 8528 . . . . . . . . 9 2o ∈ On
65a1i 11 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 2o ∈ On)
7 simpl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
86, 7, 13jca 1129 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
98adantr 480 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
10 simpr 484 . . . . . . . . 9 ((1o𝐴𝐴𝐵) → 𝐴𝐵)
1110adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 𝐴𝐵)
1211ne0d 4351 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 𝐵 ≠ ∅)
13 on0eln0 6448 . . . . . . . 8 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
142, 13syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (∅ ∈ 𝐵𝐵 ≠ ∅))
1512, 14mpbird 257 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → ∅ ∈ 𝐵)
169, 15jca 511 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → ((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵))
17 df-2o 8515 . . . . . . 7 2o = suc 1o
1817a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o = suc 1o)
19 simpl 482 . . . . . . . . 9 ((1o𝐴𝐴𝐵) → 1o𝐴)
2019adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 1o𝐴)
21 eloni 6402 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
2221adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
2322adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → Ord 𝐴)
2420, 23jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (1o𝐴 ∧ Ord 𝐴))
25 ordelsuc 7847 . . . . . . . 8 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 ↔ suc 1o𝐴))
2625biimpd 229 . . . . . . 7 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 → suc 1o𝐴))
2724, 20, 26sylc 65 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → suc 1o𝐴)
2818, 27eqsstrd 4037 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o𝐴)
29 oewordi 8637 . . . . 5 (((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (2o𝐴 → (𝐵o 2o) ⊆ (𝐵o 𝐴)))
3016, 28, 29sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵o 2o) ⊆ (𝐵o 𝐴))
314, 30eqsstrd 4037 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐵) ⊆ (𝐵o 𝐴))
322, 2, 15jca31 514 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → ((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵))
33 omordi 8612 . . . 4 (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (𝐴𝐵 → (𝐵 ·o 𝐴) ∈ (𝐵 ·o 𝐵)))
3432, 11, 33sylc 65 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐴) ∈ (𝐵 ·o 𝐵))
3531, 34sseldd 3999 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴))
3635ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wne 2940  wss 3966  c0 4342  Ord word 6391  Oncon0 6392  suc csuc 6394  (class class class)co 7438  1oc1o 8507  2oc2o 8508   ·o comu 8512  o coe 8513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-oadd 8518  df-omul 8519  df-oexp 8520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator