Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omltoe Structured version   Visualization version   GIF version

Theorem omltoe 43368
Description: Exponentiation eventually dominates multiplication. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
omltoe ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴)))

Proof of Theorem omltoe
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
21adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 𝐵 ∈ On)
3 oe2 43367 . . . . 5 (𝐵 ∈ On → (𝐵 ·o 𝐵) = (𝐵o 2o))
42, 3syl 17 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐵) = (𝐵o 2o))
5 2on 8457 . . . . . . . . 9 2o ∈ On
65a1i 11 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 2o ∈ On)
7 simpl 482 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
86, 7, 13jca 1128 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
98adantr 480 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
10 simpr 484 . . . . . . . . 9 ((1o𝐴𝐴𝐵) → 𝐴𝐵)
1110adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 𝐴𝐵)
1211ne0d 4313 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 𝐵 ≠ ∅)
13 on0eln0 6397 . . . . . . . 8 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
142, 13syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (∅ ∈ 𝐵𝐵 ≠ ∅))
1512, 14mpbird 257 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → ∅ ∈ 𝐵)
169, 15jca 511 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → ((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵))
17 df-2o 8444 . . . . . . 7 2o = suc 1o
1817a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o = suc 1o)
19 simpl 482 . . . . . . . . 9 ((1o𝐴𝐴𝐵) → 1o𝐴)
2019adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 1o𝐴)
21 eloni 6350 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
2221adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
2322adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → Ord 𝐴)
2420, 23jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (1o𝐴 ∧ Ord 𝐴))
25 ordelsuc 7803 . . . . . . . 8 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 ↔ suc 1o𝐴))
2625biimpd 229 . . . . . . 7 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 → suc 1o𝐴))
2724, 20, 26sylc 65 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → suc 1o𝐴)
2818, 27eqsstrd 3989 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o𝐴)
29 oewordi 8566 . . . . 5 (((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (2o𝐴 → (𝐵o 2o) ⊆ (𝐵o 𝐴)))
3016, 28, 29sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵o 2o) ⊆ (𝐵o 𝐴))
314, 30eqsstrd 3989 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐵) ⊆ (𝐵o 𝐴))
322, 2, 15jca31 514 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → ((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵))
33 omordi 8541 . . . 4 (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (𝐴𝐵 → (𝐵 ·o 𝐴) ∈ (𝐵 ·o 𝐵)))
3432, 11, 33sylc 65 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐴) ∈ (𝐵 ·o 𝐵))
3531, 34sseldd 3955 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴))
3635ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2927  wss 3922  c0 4304  Ord word 6339  Oncon0 6340  suc csuc 6342  (class class class)co 7394  1oc1o 8436  2oc2o 8437   ·o comu 8441  o coe 8442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-omul 8448  df-oexp 8449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator