MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbib Structured version   Visualization version   GIF version

Theorem abbib 2804
Description: Equal class abstractions require equivalent formulas, and conversely. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-8 2108 and df-clel 2810 (by avoiding use of cleqh 2863). (Revised by BJ, 23-Jun-2019.) Definitial form. (Revised by Wolf Lammen, 23-Feb-2025.)
Assertion
Ref Expression
abbib ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))

Proof of Theorem abbib
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2725 . 2 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}))
2 nfsab1 2717 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
3 nfsab1 2717 . . . 4 𝑥 𝑦 ∈ {𝑥𝜓}
42, 3nfbi 1906 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓})
5 nfv 1917 . . 3 𝑦(𝜑𝜓)
6 df-clab 2710 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
7 sbequ12r 2244 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
86, 7bitrid 282 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
9 df-clab 2710 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
10 sbequ12r 2244 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜓𝜓))
119, 10bitrid 282 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜓} ↔ 𝜓))
128, 11bibi12d 345 . . 3 (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ (𝜑𝜓)))
134, 5, 12cbvalv1 2337 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
141, 13bitri 274 1 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539   = wceq 1541  [wsb 2067  wcel 2106  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724
This theorem is referenced by:  eqabb  2873  nabbib  3045  rabbi  3462  ab0  4374  absn  4646  karden  9889  abeqabi  42149  elnev  43187  csbingVD  43635  csbsngVD  43644  csbxpgVD  43645  csbrngVD  43647  csbunigVD  43649  csbfv12gALTVD  43650
  Copyright terms: Public domain W3C validator