Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotajust | Structured version Visualization version GIF version |
Description: Soundness justification theorem for df-aiota 44464. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
aiotajust | ⊢ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4568 | . . . . 5 ⊢ (𝑦 = 𝑤 → {𝑦} = {𝑤}) | |
2 | 1 | eqeq2d 2749 | . . . 4 ⊢ (𝑦 = 𝑤 → ({𝑥 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ 𝜑} = {𝑤})) |
3 | 2 | cbvabv 2812 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} |
4 | sneq 4568 | . . . . 5 ⊢ (𝑤 = 𝑧 → {𝑤} = {𝑧}) | |
5 | 4 | eqeq2d 2749 | . . . 4 ⊢ (𝑤 = 𝑧 → ({𝑥 ∣ 𝜑} = {𝑤} ↔ {𝑥 ∣ 𝜑} = {𝑧})) |
6 | 5 | cbvabv 2812 | . . 3 ⊢ {𝑤 ∣ {𝑥 ∣ 𝜑} = {𝑤}} = {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
7 | 3, 6 | eqtri 2766 | . 2 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
8 | 7 | inteqi 4880 | 1 ⊢ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 {csn 4558 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ral 3068 df-sn 4559 df-int 4877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |