Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotajust Structured version   Visualization version   GIF version

Theorem aiotajust 41975
Description: Soundness justification theorem for df-aiota 41976. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
aiotajust {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
Distinct variable groups:   𝑥,𝑧   𝜑,𝑧   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem aiotajust
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sneq 4409 . . . . 5 (𝑦 = 𝑤 → {𝑦} = {𝑤})
21eqeq2d 2835 . . . 4 (𝑦 = 𝑤 → ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝑤}))
32cbvabv 2952 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤 ∣ {𝑥𝜑} = {𝑤}}
4 sneq 4409 . . . . 5 (𝑤 = 𝑧 → {𝑤} = {𝑧})
54eqeq2d 2835 . . . 4 (𝑤 = 𝑧 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑧}))
65cbvabv 2952 . . 3 {𝑤 ∣ {𝑥𝜑} = {𝑤}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
73, 6eqtri 2849 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
87inteqi 4703 1 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1656  {cab 2811  {csn 4399   cint 4699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-sn 4400  df-int 4700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator