Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inteqi | Structured version Visualization version GIF version |
Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | inteq 4879 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ral 3068 df-int 4877 |
This theorem is referenced by: elintrab 4888 ssintrab 4899 intmin2 4903 intsng 4913 intexrab 5259 intabs 5261 op1stb 5380 dfiin3g 5863 op2ndb 6119 ordintdif 6300 knatar 7208 uniordint 7628 oawordeulem 8347 oeeulem 8394 iinfi 9106 tcsni 9432 rankval2 9507 rankval3b 9515 cf0 9938 cfval2 9947 cofsmo 9956 isf34lem4 10064 isf34lem7 10066 sstskm 10529 dfnn3 11917 trclun 14653 cycsubg 18742 efgval2 19245 00lsp 20158 alexsublem 23103 intimafv 30945 dynkin 32035 dfttrcl2 33710 noextendlt 33799 nosepne 33810 nosepdm 33814 nosupbnd2lem1 33845 noinfbnd2lem1 33860 noetasuplem4 33866 bday0s 33949 imaiinfv 40431 elrfi 40432 harval3 41041 relintab 41080 dfid7 41109 clcnvlem 41120 dfrtrcl5 41126 dfrcl2 41171 aiotajust 44463 dfaiota2 44465 ipolub0 46166 |
Copyright terms: Public domain | W3C validator |