| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | inteq 4902 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-rex 3054 df-int 4900 |
| This theorem is referenced by: elintrab 4913 ssintrab 4924 intmin2 4928 intsng 4936 intexrab 5289 intabs 5291 op1stb 5418 dfiin3g 5914 op2ndb 6180 ordintdif 6362 knatar 7298 uniordint 7741 oawordeulem 8479 oeeulem 8526 naddov3 8605 iinfi 9326 dfttrcl2 9639 tcsni 9658 rankval2 9733 rankval3b 9741 cf0 10164 cfval2 10173 cofsmo 10182 isf34lem4 10290 isf34lem7 10292 sstskm 10755 dfnn3 12160 trclun 14939 cycsubg 19105 efgval2 19621 00lsp 20902 alexsublem 23947 noextendlt 27597 nosepne 27608 nosepdm 27612 nosupbnd2lem1 27643 noinfbnd2lem1 27658 noetasuplem4 27664 bday0s 27760 intimafv 32667 dynkin 34133 tz9.1regs 35066 imaiinfv 42666 elrfi 42667 onuniintrab 43199 naddov4 43356 naddwordnexlem4 43374 harval3 43511 relintab 43556 dfid7 43585 clcnvlem 43596 dfrtrcl5 43602 dfrcl2 43647 aiotajust 47069 dfaiota2 47071 ipolub0 48977 |
| Copyright terms: Public domain | W3C validator |