| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | inteq 4913 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-rex 3054 df-int 4911 |
| This theorem is referenced by: elintrab 4924 ssintrab 4935 intmin2 4939 intsng 4947 intexrab 5302 intabs 5304 op1stb 5431 dfiin3g 5932 op2ndb 6200 ordintdif 6383 knatar 7332 uniordint 7777 oawordeulem 8518 oeeulem 8565 naddov3 8644 iinfi 9368 dfttrcl2 9677 tcsni 9696 rankval2 9771 rankval3b 9779 cf0 10204 cfval2 10213 cofsmo 10222 isf34lem4 10330 isf34lem7 10332 sstskm 10795 dfnn3 12200 trclun 14980 cycsubg 19140 efgval2 19654 00lsp 20887 alexsublem 23931 noextendlt 27581 nosepne 27592 nosepdm 27596 nosupbnd2lem1 27627 noinfbnd2lem1 27642 noetasuplem4 27648 bday0s 27740 intimafv 32634 dynkin 34157 imaiinfv 42681 elrfi 42682 onuniintrab 43215 naddov4 43372 naddwordnexlem4 43390 harval3 43527 relintab 43572 dfid7 43601 clcnvlem 43612 dfrtrcl5 43618 dfrcl2 43663 aiotajust 47085 dfaiota2 47087 ipolub0 48980 |
| Copyright terms: Public domain | W3C validator |