![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inteqi | Structured version Visualization version GIF version |
Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | inteq 4973 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ral 3068 df-rex 3077 df-int 4971 |
This theorem is referenced by: elintrab 4984 ssintrab 4995 intmin2 4999 intsng 5007 intexrab 5365 intabs 5367 op1stb 5491 dfiin3g 5991 op2ndb 6258 ordintdif 6445 knatar 7393 uniordint 7837 oawordeulem 8610 oeeulem 8657 naddov3 8736 iinfi 9486 dfttrcl2 9793 tcsni 9812 rankval2 9887 rankval3b 9895 cf0 10320 cfval2 10329 cofsmo 10338 isf34lem4 10446 isf34lem7 10448 sstskm 10911 dfnn3 12307 trclun 15063 cycsubg 19248 efgval2 19766 00lsp 21002 alexsublem 24073 noextendlt 27732 nosepne 27743 nosepdm 27747 nosupbnd2lem1 27778 noinfbnd2lem1 27793 noetasuplem4 27799 bday0s 27891 intimafv 32722 dynkin 34131 imaiinfv 42649 elrfi 42650 onuniintrab 43187 naddov4 43345 naddwordnexlem4 43363 harval3 43500 relintab 43545 dfid7 43574 clcnvlem 43585 dfrtrcl5 43591 dfrcl2 43636 aiotajust 46999 dfaiota2 47001 ipolub0 48664 |
Copyright terms: Public domain | W3C validator |