| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | inteq 4900 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ral 3048 df-rex 3057 df-int 4898 |
| This theorem is referenced by: elintrab 4910 ssintrab 4921 intmin2 4925 intsng 4933 intexrab 5285 intabs 5287 op1stb 5411 dfiin3g 5908 op2ndb 6174 ordintdif 6357 knatar 7291 uniordint 7734 oawordeulem 8469 oeeulem 8516 naddov3 8595 iinfi 9301 dfttrcl2 9614 tcsni 9633 rankval2 9708 rankval3b 9716 cf0 10139 cfval2 10148 cofsmo 10157 isf34lem4 10265 isf34lem7 10267 sstskm 10730 dfnn3 12136 trclun 14918 cycsubg 19118 efgval2 19634 00lsp 20912 alexsublem 23957 noextendlt 27606 nosepne 27617 nosepdm 27621 nosupbnd2lem1 27652 noinfbnd2lem1 27667 noetasuplem4 27673 bday0s 27770 intimafv 32687 dynkin 34175 rankval2b 35103 tz9.1regs 35118 imaiinfv 42725 elrfi 42726 onuniintrab 43258 naddov4 43415 naddwordnexlem4 43433 harval3 43570 relintab 43615 dfid7 43644 clcnvlem 43655 dfrtrcl5 43661 dfrcl2 43706 aiotajust 47114 dfaiota2 47116 ipolub0 49022 |
| Copyright terms: Public domain | W3C validator |