| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | inteq 4916 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ral 3046 df-rex 3055 df-int 4914 |
| This theorem is referenced by: elintrab 4927 ssintrab 4938 intmin2 4942 intsng 4950 intexrab 5305 intabs 5307 op1stb 5434 dfiin3g 5935 op2ndb 6203 ordintdif 6386 knatar 7335 uniordint 7780 oawordeulem 8521 oeeulem 8568 naddov3 8647 iinfi 9375 dfttrcl2 9684 tcsni 9703 rankval2 9778 rankval3b 9786 cf0 10211 cfval2 10220 cofsmo 10229 isf34lem4 10337 isf34lem7 10339 sstskm 10802 dfnn3 12207 trclun 14987 cycsubg 19147 efgval2 19661 00lsp 20894 alexsublem 23938 noextendlt 27588 nosepne 27599 nosepdm 27603 nosupbnd2lem1 27634 noinfbnd2lem1 27649 noetasuplem4 27655 bday0s 27747 intimafv 32641 dynkin 34164 imaiinfv 42688 elrfi 42689 onuniintrab 43222 naddov4 43379 naddwordnexlem4 43397 harval3 43534 relintab 43579 dfid7 43608 clcnvlem 43619 dfrtrcl5 43625 dfrcl2 43670 aiotajust 47089 dfaiota2 47091 ipolub0 48984 |
| Copyright terms: Public domain | W3C validator |