| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | inteq 4900 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-ral 3049 df-rex 3058 df-int 4898 |
| This theorem is referenced by: elintrab 4910 ssintrab 4921 intmin2 4925 intsng 4933 intexrab 5287 intabs 5289 op1stb 5414 dfiin3g 5912 op2ndb 6179 ordintdif 6362 knatar 7297 uniordint 7740 oawordeulem 8475 oeeulem 8522 naddov3 8601 iinfi 9308 dfttrcl2 9621 tcsni 9638 rankval2 9718 rankval3b 9726 cf0 10149 cfval2 10158 cofsmo 10167 isf34lem4 10275 isf34lem7 10277 sstskm 10740 dfnn3 12146 trclun 14923 cycsubg 19122 efgval2 19638 00lsp 20916 alexsublem 23960 noextendlt 27609 nosepne 27620 nosepdm 27624 nosupbnd2lem1 27655 noinfbnd2lem1 27670 noetasuplem4 27676 bday0s 27773 intimafv 32696 dynkin 34201 rankval2b 35131 tz9.1regs 35151 imaiinfv 42810 elrfi 42811 onuniintrab 43343 naddov4 43500 naddwordnexlem4 43518 harval3 43655 relintab 43700 dfid7 43729 clcnvlem 43740 dfrtrcl5 43746 dfrcl2 43791 aiotajust 47208 dfaiota2 47210 ipolub0 49116 |
| Copyright terms: Public domain | W3C validator |