Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inteqi | Structured version Visualization version GIF version |
Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | inteq 4888 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∩ cint 4885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-ral 3071 df-int 4886 |
This theorem is referenced by: elintrab 4897 ssintrab 4908 intmin2 4912 intsng 4922 intexrab 5268 intabs 5270 op1stb 5390 dfiin3g 5873 op2ndb 6129 ordintdif 6314 knatar 7225 uniordint 7646 oawordeulem 8377 oeeulem 8424 iinfi 9164 dfttrcl2 9470 tcsni 9511 rankval2 9587 rankval3b 9595 cf0 10018 cfval2 10027 cofsmo 10036 isf34lem4 10144 isf34lem7 10146 sstskm 10609 dfnn3 11998 trclun 14736 cycsubg 18838 efgval2 19341 00lsp 20254 alexsublem 23206 intimafv 31052 dynkin 32144 noextendlt 33881 nosepne 33892 nosepdm 33896 nosupbnd2lem1 33927 noinfbnd2lem1 33942 noetasuplem4 33948 bday0s 34031 imaiinfv 40524 elrfi 40525 harval3 41134 relintab 41173 dfid7 41202 clcnvlem 41213 dfrtrcl5 41219 dfrcl2 41264 aiotajust 44555 dfaiota2 44557 ipolub0 46257 |
Copyright terms: Public domain | W3C validator |