| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | inteq 4925 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-ral 3052 df-rex 3061 df-int 4923 |
| This theorem is referenced by: elintrab 4936 ssintrab 4947 intmin2 4951 intsng 4959 intexrab 5317 intabs 5319 op1stb 5446 dfiin3g 5948 op2ndb 6216 ordintdif 6403 knatar 7350 uniordint 7795 oawordeulem 8566 oeeulem 8613 naddov3 8692 iinfi 9429 dfttrcl2 9738 tcsni 9757 rankval2 9832 rankval3b 9840 cf0 10265 cfval2 10274 cofsmo 10283 isf34lem4 10391 isf34lem7 10393 sstskm 10856 dfnn3 12254 trclun 15033 cycsubg 19191 efgval2 19705 00lsp 20938 alexsublem 23982 noextendlt 27633 nosepne 27644 nosepdm 27648 nosupbnd2lem1 27679 noinfbnd2lem1 27694 noetasuplem4 27700 bday0s 27792 intimafv 32688 dynkin 34198 imaiinfv 42716 elrfi 42717 onuniintrab 43250 naddov4 43407 naddwordnexlem4 43425 harval3 43562 relintab 43607 dfid7 43636 clcnvlem 43647 dfrtrcl5 43653 dfrcl2 43698 aiotajust 47113 dfaiota2 47115 ipolub0 48966 |
| Copyright terms: Public domain | W3C validator |