MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moexexlem Structured version   Visualization version   GIF version

Theorem moexexlem 2629
Description: Factor out the proof skeleton of moexex 2641 and moexexvw 2631. (Contributed by Wolf Lammen, 2-Oct-2023.)
Hypotheses
Ref Expression
moexexlem.1 𝑦𝜑
moexexlem.2 𝑦∃*𝑥𝜑
moexexlem.3 𝑥∃*𝑦𝑥(𝜑𝜓)
Assertion
Ref Expression
moexexlem ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))

Proof of Theorem moexexlem
StepHypRef Expression
1 nfmo1 2560 . . . 4 𝑥∃*𝑥𝜑
2 nfa1 2152 . . . . 5 𝑥𝑥∃*𝑦𝜓
3 moexexlem.3 . . . . 5 𝑥∃*𝑦𝑥(𝜑𝜓)
42, 3nfim 1895 . . . 4 𝑥(∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))
5 moexexlem.2 . . . . . 6 𝑦∃*𝑥𝜑
6 moexexlem.1 . . . . . 6 𝑦𝜑
7 mopick 2628 . . . . . . . 8 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
87ex 412 . . . . . . 7 (∃*𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
98com23 86 . . . . . 6 (∃*𝑥𝜑 → (𝜑 → (∃𝑥(𝜑𝜓) → 𝜓)))
105, 6, 9alrimd 2216 . . . . 5 (∃*𝑥𝜑 → (𝜑 → ∀𝑦(∃𝑥(𝜑𝜓) → 𝜓)))
11 moim 2547 . . . . . 6 (∀𝑦(∃𝑥(𝜑𝜓) → 𝜓) → (∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
1211spsd 2188 . . . . 5 (∀𝑦(∃𝑥(𝜑𝜓) → 𝜓) → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
1310, 12syl6 35 . . . 4 (∃*𝑥𝜑 → (𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
141, 4, 13exlimd 2219 . . 3 (∃*𝑥𝜑 → (∃𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
156nfex 2328 . . . . . 6 𝑦𝑥𝜑
16 exsimpl 1867 . . . . . 6 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
1715, 16exlimi 2218 . . . . 5 (∃𝑦𝑥(𝜑𝜓) → ∃𝑥𝜑)
18 nexmo 2544 . . . . 5 (¬ ∃𝑦𝑥(𝜑𝜓) → ∃*𝑦𝑥(𝜑𝜓))
1917, 18nsyl5 159 . . . 4 (¬ ∃𝑥𝜑 → ∃*𝑦𝑥(𝜑𝜓))
2019a1d 25 . . 3 (¬ ∃𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
2114, 20pm2.61d1 180 . 2 (∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
2221imp 406 1 ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535  wex 1777  wnf 1781  ∃*wmo 2541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-mo 2543
This theorem is referenced by:  moexexvw  2631  2moswapv  2632  moexex  2641
  Copyright terms: Public domain W3C validator