MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moexexlem Structured version   Visualization version   GIF version

Theorem moexexlem 2709
Description: Factor out the proof skeleton of moexex 2721 and moexexvw 2711. (Contributed by Wolf Lammen, 2-Oct-2023.)
Hypotheses
Ref Expression
moexexlem.1 𝑦𝜑
moexexlem.2 𝑦∃*𝑥𝜑
moexexlem.3 𝑥∃*𝑦𝑥(𝜑𝜓)
Assertion
Ref Expression
moexexlem ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))

Proof of Theorem moexexlem
StepHypRef Expression
1 nfmo1 2638 . . . 4 𝑥∃*𝑥𝜑
2 nfa1 2148 . . . . 5 𝑥𝑥∃*𝑦𝜓
3 moexexlem.3 . . . . 5 𝑥∃*𝑦𝑥(𝜑𝜓)
42, 3nfim 1890 . . . 4 𝑥(∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))
5 moexexlem.2 . . . . . 6 𝑦∃*𝑥𝜑
6 moexexlem.1 . . . . . 6 𝑦𝜑
7 mopick 2708 . . . . . . . 8 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
87ex 413 . . . . . . 7 (∃*𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
98com23 86 . . . . . 6 (∃*𝑥𝜑 → (𝜑 → (∃𝑥(𝜑𝜓) → 𝜓)))
105, 6, 9alrimd 2208 . . . . 5 (∃*𝑥𝜑 → (𝜑 → ∀𝑦(∃𝑥(𝜑𝜓) → 𝜓)))
11 moim 2623 . . . . . 6 (∀𝑦(∃𝑥(𝜑𝜓) → 𝜓) → (∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
1211spsd 2178 . . . . 5 (∀𝑦(∃𝑥(𝜑𝜓) → 𝜓) → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
1310, 12syl6 35 . . . 4 (∃*𝑥𝜑 → (𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
141, 4, 13exlimd 2211 . . 3 (∃*𝑥𝜑 → (∃𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
156nfex 2337 . . . . . . 7 𝑦𝑥𝜑
16 exsimpl 1862 . . . . . . 7 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
1715, 16exlimi 2210 . . . . . 6 (∃𝑦𝑥(𝜑𝜓) → ∃𝑥𝜑)
18 nexmo 2620 . . . . . 6 (¬ ∃𝑦𝑥(𝜑𝜓) → ∃*𝑦𝑥(𝜑𝜓))
1917, 18nsyl4 161 . . . . 5 (¬ ∃*𝑦𝑥(𝜑𝜓) → ∃𝑥𝜑)
2019con1i 149 . . . 4 (¬ ∃𝑥𝜑 → ∃*𝑦𝑥(𝜑𝜓))
2120a1d 25 . . 3 (¬ ∃𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
2214, 21pm2.61d1 181 . 2 (∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
2322imp 407 1 ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1528  wex 1773  wnf 1777  ∃*wmo 2617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-10 2138  ax-11 2153  ax-12 2169
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619
This theorem is referenced by:  moexexvw  2711  2moswapv  2712  moexex  2721
  Copyright terms: Public domain W3C validator