MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moexexlem Structured version   Visualization version   GIF version

Theorem moexexlem 2647
Description: Factor out the proof skeleton of moexex 2659 and moexexvw 2649. (Contributed by Wolf Lammen, 2-Oct-2023.)
Hypotheses
Ref Expression
moexexlem.1 𝑦𝜑
moexexlem.2 𝑦∃*𝑥𝜑
moexexlem.3 𝑥∃*𝑦𝑥(𝜑𝜓)
Assertion
Ref Expression
moexexlem ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))

Proof of Theorem moexexlem
StepHypRef Expression
1 nfmo1 2575 . . . 4 𝑥∃*𝑥𝜑
2 nfa1 2152 . . . . 5 𝑥𝑥∃*𝑦𝜓
3 moexexlem.3 . . . . 5 𝑥∃*𝑦𝑥(𝜑𝜓)
42, 3nfim 1897 . . . 4 𝑥(∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))
5 moexexlem.2 . . . . . 6 𝑦∃*𝑥𝜑
6 moexexlem.1 . . . . . 6 𝑦𝜑
7 mopick 2646 . . . . . . . 8 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
87ex 416 . . . . . . 7 (∃*𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
98com23 86 . . . . . 6 (∃*𝑥𝜑 → (𝜑 → (∃𝑥(𝜑𝜓) → 𝜓)))
105, 6, 9alrimd 2213 . . . . 5 (∃*𝑥𝜑 → (𝜑 → ∀𝑦(∃𝑥(𝜑𝜓) → 𝜓)))
11 moim 2561 . . . . . 6 (∀𝑦(∃𝑥(𝜑𝜓) → 𝜓) → (∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
1211spsd 2184 . . . . 5 (∀𝑦(∃𝑥(𝜑𝜓) → 𝜓) → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
1310, 12syl6 35 . . . 4 (∃*𝑥𝜑 → (𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
141, 4, 13exlimd 2216 . . 3 (∃*𝑥𝜑 → (∃𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
156nfex 2332 . . . . . 6 𝑦𝑥𝜑
16 exsimpl 1869 . . . . . 6 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
1715, 16exlimi 2215 . . . . 5 (∃𝑦𝑥(𝜑𝜓) → ∃𝑥𝜑)
18 nexmo 2558 . . . . 5 (¬ ∃𝑦𝑥(𝜑𝜓) → ∃*𝑦𝑥(𝜑𝜓))
1917, 18nsyl5 162 . . . 4 (¬ ∃𝑥𝜑 → ∃*𝑦𝑥(𝜑𝜓))
2019a1d 25 . . 3 (¬ ∃𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
2114, 20pm2.61d1 183 . 2 (∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
2221imp 410 1 ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wal 1536  wex 1781  wnf 1785  ∃*wmo 2555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-11 2158  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557
This theorem is referenced by:  moexexvw  2649  2moswapv  2650  moexex  2659
  Copyright terms: Public domain W3C validator