Proof of Theorem moexexlem
| Step | Hyp | Ref
| Expression |
| 1 | | nfmo1 2557 |
. . . 4
⊢
Ⅎ𝑥∃*𝑥𝜑 |
| 2 | | nfa1 2151 |
. . . . 5
⊢
Ⅎ𝑥∀𝑥∃*𝑦𝜓 |
| 3 | | moexexlem.3 |
. . . . 5
⊢
Ⅎ𝑥∃*𝑦∃𝑥(𝜑 ∧ 𝜓) |
| 4 | 2, 3 | nfim 1896 |
. . . 4
⊢
Ⅎ𝑥(∀𝑥∃*𝑦𝜓 → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |
| 5 | | moexexlem.2 |
. . . . . 6
⊢
Ⅎ𝑦∃*𝑥𝜑 |
| 6 | | moexexlem.1 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
| 7 | | mopick 2625 |
. . . . . . . 8
⊢
((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
| 8 | 7 | ex 412 |
. . . . . . 7
⊢
(∃*𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) → (𝜑 → 𝜓))) |
| 9 | 8 | com23 86 |
. . . . . 6
⊢
(∃*𝑥𝜑 → (𝜑 → (∃𝑥(𝜑 ∧ 𝜓) → 𝜓))) |
| 10 | 5, 6, 9 | alrimd 2215 |
. . . . 5
⊢
(∃*𝑥𝜑 → (𝜑 → ∀𝑦(∃𝑥(𝜑 ∧ 𝜓) → 𝜓))) |
| 11 | | moim 2544 |
. . . . . 6
⊢
(∀𝑦(∃𝑥(𝜑 ∧ 𝜓) → 𝜓) → (∃*𝑦𝜓 → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓))) |
| 12 | 11 | spsd 2187 |
. . . . 5
⊢
(∀𝑦(∃𝑥(𝜑 ∧ 𝜓) → 𝜓) → (∀𝑥∃*𝑦𝜓 → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓))) |
| 13 | 10, 12 | syl6 35 |
. . . 4
⊢
(∃*𝑥𝜑 → (𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)))) |
| 14 | 1, 4, 13 | exlimd 2218 |
. . 3
⊢
(∃*𝑥𝜑 → (∃𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)))) |
| 15 | 6 | nfex 2324 |
. . . . . 6
⊢
Ⅎ𝑦∃𝑥𝜑 |
| 16 | | exsimpl 1868 |
. . . . . 6
⊢
(∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| 17 | 15, 16 | exlimi 2217 |
. . . . 5
⊢
(∃𝑦∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
| 18 | | nexmo 2541 |
. . . . 5
⊢ (¬
∃𝑦∃𝑥(𝜑 ∧ 𝜓) → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |
| 19 | 17, 18 | nsyl5 159 |
. . . 4
⊢ (¬
∃𝑥𝜑 → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |
| 20 | 19 | a1d 25 |
. . 3
⊢ (¬
∃𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓))) |
| 21 | 14, 20 | pm2.61d1 180 |
. 2
⊢
(∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓))) |
| 22 | 21 | imp 406 |
1
⊢
((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |