Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval3 Structured version   Visualization version   GIF version

Theorem dibelval3 41141
Description: Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dibval3.b 𝐵 = (Base‘𝐾)
dibval3.l = (le‘𝐾)
dibval3.h 𝐻 = (LHyp‘𝐾)
dibval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibval3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dibval3.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
Distinct variable groups:   𝑓,𝐾   𝑔,𝐾   𝑇,𝑓   𝑓,𝑊   𝑔,𝑊   𝑓,𝑋   ,𝑓   𝐵,𝑓   𝑓,𝐻   0 ,𝑓   𝑇,𝑔   𝑓,𝑉   𝑓,𝑌
Allowed substitution hints:   𝐵(𝑔)   𝑅(𝑓,𝑔)   𝐻(𝑔)   𝐼(𝑓,𝑔)   (𝑔)   𝑉(𝑔)   𝑋(𝑔)   𝑌(𝑔)   0 (𝑔)

Proof of Theorem dibelval3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dibval3.b . . . 4 𝐵 = (Base‘𝐾)
2 dibval3.l . . . 4 = (le‘𝐾)
3 dibval3.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibval3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval3.o . . . 4 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2729 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibval3.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 41138 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
98eleq2d 2814 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })))
10 dibval3.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
111, 2, 3, 4, 10, 6diaelval 41027 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (𝑓𝑇 ∧ (𝑅𝑓) 𝑋)))
1211anbi1d 631 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩)))
13 an13 647 . . . . . . . 8 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
14 velsn 4605 . . . . . . . . 9 (𝑠 ∈ { 0 } ↔ 𝑠 = 0 )
1514anbi1i 624 . . . . . . . 8 ((𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
1613, 15bitri 275 . . . . . . 7 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
1716exbii 1848 . . . . . 6 (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ ∃𝑠(𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
184fvexi 6872 . . . . . . . . 9 𝑇 ∈ V
1918mptex 7197 . . . . . . . 8 (𝑔𝑇 ↦ ( I ↾ 𝐵)) ∈ V
205, 19eqeltri 2824 . . . . . . 7 0 ∈ V
21 opeq2 4838 . . . . . . . . 9 (𝑠 = 0 → ⟨𝑓, 𝑠⟩ = ⟨𝑓, 0 ⟩)
2221eqeq2d 2740 . . . . . . . 8 (𝑠 = 0 → (𝑌 = ⟨𝑓, 𝑠⟩ ↔ 𝑌 = ⟨𝑓, 0 ⟩))
2322anbi2d 630 . . . . . . 7 (𝑠 = 0 → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩)))
2420, 23ceqsexv 3498 . . . . . 6 (∃𝑠(𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2517, 24bitri 275 . . . . 5 (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
26 anass 468 . . . . . 6 (((𝑓𝑇𝑌 = ⟨𝑓, 0 ⟩) ∧ (𝑅𝑓) 𝑋) ↔ (𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
27 an32 646 . . . . . 6 (((𝑓𝑇𝑌 = ⟨𝑓, 0 ⟩) ∧ (𝑅𝑓) 𝑋) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2826, 27bitr3i 277 . . . . 5 ((𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2912, 25, 283bitr4g 314 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋))))
3029exbidv 1921 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ ∃𝑓(𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋))))
31 elxp 5661 . . 3 (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) ↔ ∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })))
32 df-rex 3054 . . 3 (∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋) ↔ ∃𝑓(𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
3330, 31, 323bitr4g 314 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
349, 33bitrd 279 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3447  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188   I cid 5532   × cxp 5636  cres 5640  cfv 6511  Basecbs 17179  lecple 17227  LHypclh 39978  LTrncltrn 40095  trLctrl 40152  DIsoAcdia 41022  DIsoBcdib 41132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-disoa 41023  df-dib 41133
This theorem is referenced by:  cdlemn11pre  41204  dihord2pre  41219
  Copyright terms: Public domain W3C validator