Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval3 Structured version   Visualization version   GIF version

Theorem dibelval3 38277
Description: Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dibval3.b 𝐵 = (Base‘𝐾)
dibval3.l = (le‘𝐾)
dibval3.h 𝐻 = (LHyp‘𝐾)
dibval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibval3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dibval3.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
Distinct variable groups:   𝑓,𝐾   𝑔,𝐾   𝑇,𝑓   𝑓,𝑊   𝑔,𝑊   𝑓,𝑋   ,𝑓   𝐵,𝑓   𝑓,𝐻   0 ,𝑓   𝑇,𝑔   𝑓,𝑉   𝑓,𝑌
Allowed substitution hints:   𝐵(𝑔)   𝑅(𝑓,𝑔)   𝐻(𝑔)   𝐼(𝑓,𝑔)   (𝑔)   𝑉(𝑔)   𝑋(𝑔)   𝑌(𝑔)   0 (𝑔)

Proof of Theorem dibelval3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dibval3.b . . . 4 𝐵 = (Base‘𝐾)
2 dibval3.l . . . 4 = (le‘𝐾)
3 dibval3.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibval3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval3.o . . . 4 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2821 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibval3.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 38274 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
98eleq2d 2898 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })))
10 dibval3.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
111, 2, 3, 4, 10, 6diaelval 38163 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (𝑓𝑇 ∧ (𝑅𝑓) 𝑋)))
1211anbi1d 631 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩)))
13 an13 645 . . . . . . . 8 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
14 velsn 4576 . . . . . . . . 9 (𝑠 ∈ { 0 } ↔ 𝑠 = 0 )
1514anbi1i 625 . . . . . . . 8 ((𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
1613, 15bitri 277 . . . . . . 7 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
1716exbii 1844 . . . . . 6 (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ ∃𝑠(𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
184fvexi 6678 . . . . . . . . 9 𝑇 ∈ V
1918mptex 6980 . . . . . . . 8 (𝑔𝑇 ↦ ( I ↾ 𝐵)) ∈ V
205, 19eqeltri 2909 . . . . . . 7 0 ∈ V
21 opeq2 4797 . . . . . . . . 9 (𝑠 = 0 → ⟨𝑓, 𝑠⟩ = ⟨𝑓, 0 ⟩)
2221eqeq2d 2832 . . . . . . . 8 (𝑠 = 0 → (𝑌 = ⟨𝑓, 𝑠⟩ ↔ 𝑌 = ⟨𝑓, 0 ⟩))
2322anbi2d 630 . . . . . . 7 (𝑠 = 0 → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩)))
2420, 23ceqsexv 3541 . . . . . 6 (∃𝑠(𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2517, 24bitri 277 . . . . 5 (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
26 anass 471 . . . . . 6 (((𝑓𝑇𝑌 = ⟨𝑓, 0 ⟩) ∧ (𝑅𝑓) 𝑋) ↔ (𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
27 an32 644 . . . . . 6 (((𝑓𝑇𝑌 = ⟨𝑓, 0 ⟩) ∧ (𝑅𝑓) 𝑋) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2826, 27bitr3i 279 . . . . 5 ((𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2912, 25, 283bitr4g 316 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋))))
3029exbidv 1918 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ ∃𝑓(𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋))))
31 elxp 5572 . . 3 (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) ↔ ∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })))
32 df-rex 3144 . . 3 (∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋) ↔ ∃𝑓(𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
3330, 31, 323bitr4g 316 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
349, 33bitrd 281 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wrex 3139  Vcvv 3494  {csn 4560  cop 4566   class class class wbr 5058  cmpt 5138   I cid 5453   × cxp 5547  cres 5551  cfv 6349  Basecbs 16477  lecple 16566  LHypclh 37114  LTrncltrn 37231  trLctrl 37288  DIsoAcdia 38158  DIsoBcdib 38268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-disoa 38159  df-dib 38269
This theorem is referenced by:  cdlemn11pre  38340  dihord2pre  38355
  Copyright terms: Public domain W3C validator