Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval3 Structured version   Visualization version   GIF version

Theorem dibelval3 39161
Description: Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dibval3.b 𝐵 = (Base‘𝐾)
dibval3.l = (le‘𝐾)
dibval3.h 𝐻 = (LHyp‘𝐾)
dibval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibval3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dibval3.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
Distinct variable groups:   𝑓,𝐾   𝑔,𝐾   𝑇,𝑓   𝑓,𝑊   𝑔,𝑊   𝑓,𝑋   ,𝑓   𝐵,𝑓   𝑓,𝐻   0 ,𝑓   𝑇,𝑔   𝑓,𝑉   𝑓,𝑌
Allowed substitution hints:   𝐵(𝑔)   𝑅(𝑓,𝑔)   𝐻(𝑔)   𝐼(𝑓,𝑔)   (𝑔)   𝑉(𝑔)   𝑋(𝑔)   𝑌(𝑔)   0 (𝑔)

Proof of Theorem dibelval3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dibval3.b . . . 4 𝐵 = (Base‘𝐾)
2 dibval3.l . . . 4 = (le‘𝐾)
3 dibval3.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibval3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval3.o . . . 4 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2738 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibval3.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 39158 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
98eleq2d 2824 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })))
10 dibval3.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
111, 2, 3, 4, 10, 6diaelval 39047 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (𝑓𝑇 ∧ (𝑅𝑓) 𝑋)))
1211anbi1d 630 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩)))
13 an13 644 . . . . . . . 8 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
14 velsn 4577 . . . . . . . . 9 (𝑠 ∈ { 0 } ↔ 𝑠 = 0 )
1514anbi1i 624 . . . . . . . 8 ((𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
1613, 15bitri 274 . . . . . . 7 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
1716exbii 1850 . . . . . 6 (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ ∃𝑠(𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
184fvexi 6788 . . . . . . . . 9 𝑇 ∈ V
1918mptex 7099 . . . . . . . 8 (𝑔𝑇 ↦ ( I ↾ 𝐵)) ∈ V
205, 19eqeltri 2835 . . . . . . 7 0 ∈ V
21 opeq2 4805 . . . . . . . . 9 (𝑠 = 0 → ⟨𝑓, 𝑠⟩ = ⟨𝑓, 0 ⟩)
2221eqeq2d 2749 . . . . . . . 8 (𝑠 = 0 → (𝑌 = ⟨𝑓, 𝑠⟩ ↔ 𝑌 = ⟨𝑓, 0 ⟩))
2322anbi2d 629 . . . . . . 7 (𝑠 = 0 → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩)))
2420, 23ceqsexv 3479 . . . . . 6 (∃𝑠(𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2517, 24bitri 274 . . . . 5 (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
26 anass 469 . . . . . 6 (((𝑓𝑇𝑌 = ⟨𝑓, 0 ⟩) ∧ (𝑅𝑓) 𝑋) ↔ (𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
27 an32 643 . . . . . 6 (((𝑓𝑇𝑌 = ⟨𝑓, 0 ⟩) ∧ (𝑅𝑓) 𝑋) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2826, 27bitr3i 276 . . . . 5 ((𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2912, 25, 283bitr4g 314 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋))))
3029exbidv 1924 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ ∃𝑓(𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋))))
31 elxp 5612 . . 3 (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) ↔ ∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })))
32 df-rex 3070 . . 3 (∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋) ↔ ∃𝑓(𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
3330, 31, 323bitr4g 314 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
349, 33bitrd 278 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  {csn 4561  cop 4567   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  cres 5591  cfv 6433  Basecbs 16912  lecple 16969  LHypclh 37998  LTrncltrn 38115  trLctrl 38172  DIsoAcdia 39042  DIsoBcdib 39152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-disoa 39043  df-dib 39153
This theorem is referenced by:  cdlemn11pre  39224  dihord2pre  39239
  Copyright terms: Public domain W3C validator