Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval3 Structured version   Visualization version   GIF version

Theorem dibelval3 37835
Description: Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dibval3.b 𝐵 = (Base‘𝐾)
dibval3.l = (le‘𝐾)
dibval3.h 𝐻 = (LHyp‘𝐾)
dibval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibval3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dibval3.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibelval3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
Distinct variable groups:   𝑓,𝐾   𝑔,𝐾   𝑇,𝑓   𝑓,𝑊   𝑔,𝑊   𝑓,𝑋   ,𝑓   𝐵,𝑓   𝑓,𝐻   0 ,𝑓   𝑇,𝑔   𝑓,𝑉   𝑓,𝑌
Allowed substitution hints:   𝐵(𝑔)   𝑅(𝑓,𝑔)   𝐻(𝑔)   𝐼(𝑓,𝑔)   (𝑔)   𝑉(𝑔)   𝑋(𝑔)   𝑌(𝑔)   0 (𝑔)

Proof of Theorem dibelval3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dibval3.b . . . 4 𝐵 = (Base‘𝐾)
2 dibval3.l . . . 4 = (le‘𝐾)
3 dibval3.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibval3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval3.o . . . 4 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2797 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibval3.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 37832 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }))
98eleq2d 2870 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ 𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })))
10 dibval3.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
111, 2, 3, 4, 10, 6diaelval 37721 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (𝑓𝑇 ∧ (𝑅𝑓) 𝑋)))
1211anbi1d 629 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩)))
13 an13 643 . . . . . . . 8 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
14 velsn 4494 . . . . . . . . 9 (𝑠 ∈ { 0 } ↔ 𝑠 = 0 )
1514anbi1i 623 . . . . . . . 8 ((𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
1613, 15bitri 276 . . . . . . 7 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
1716exbii 1833 . . . . . 6 (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ ∃𝑠(𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)))
184fvexi 6559 . . . . . . . . 9 𝑇 ∈ V
1918mptex 6859 . . . . . . . 8 (𝑔𝑇 ↦ ( I ↾ 𝐵)) ∈ V
205, 19eqeltri 2881 . . . . . . 7 0 ∈ V
21 opeq2 4717 . . . . . . . . 9 (𝑠 = 0 → ⟨𝑓, 𝑠⟩ = ⟨𝑓, 0 ⟩)
2221eqeq2d 2807 . . . . . . . 8 (𝑠 = 0 → (𝑌 = ⟨𝑓, 𝑠⟩ ↔ 𝑌 = ⟨𝑓, 0 ⟩))
2322anbi2d 628 . . . . . . 7 (𝑠 = 0 → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩)))
2420, 23ceqsexv 3487 . . . . . 6 (∃𝑠(𝑠 = 0 ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 𝑠⟩)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2517, 24bitri 276 . . . . 5 (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
26 anass 469 . . . . . 6 (((𝑓𝑇𝑌 = ⟨𝑓, 0 ⟩) ∧ (𝑅𝑓) 𝑋) ↔ (𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
27 an32 642 . . . . . 6 (((𝑓𝑇𝑌 = ⟨𝑓, 0 ⟩) ∧ (𝑅𝑓) 𝑋) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2826, 27bitr3i 278 . . . . 5 ((𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑋) ∧ 𝑌 = ⟨𝑓, 0 ⟩))
2912, 25, 283bitr4g 315 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (∃𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋))))
3029exbidv 1903 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })) ↔ ∃𝑓(𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋))))
31 elxp 5473 . . 3 (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) ↔ ∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑠 ∈ { 0 })))
32 df-rex 3113 . . 3 (∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋) ↔ ∃𝑓(𝑓𝑇 ∧ (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
3330, 31, 323bitr4g 315 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
349, 33bitrd 280 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝑌 ∈ (𝐼𝑋) ↔ ∃𝑓𝑇 (𝑌 = ⟨𝑓, 0 ⟩ ∧ (𝑅𝑓) 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wex 1765  wcel 2083  wrex 3108  Vcvv 3440  {csn 4478  cop 4484   class class class wbr 4968  cmpt 5047   I cid 5354   × cxp 5448  cres 5452  cfv 6232  Basecbs 16316  lecple 16405  LHypclh 36672  LTrncltrn 36789  trLctrl 36846  DIsoAcdia 37716  DIsoBcdib 37826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-disoa 37717  df-dib 37827
This theorem is referenced by:  cdlemn11pre  37898  dihord2pre  37913
  Copyright terms: Public domain W3C validator