Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibelval3 Structured version   Visualization version   GIF version

Theorem dibelval3 39613
Description: Member of the partial isomorphism B. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dibval3.b 𝐡 = (Baseβ€˜πΎ)
dibval3.l ≀ = (leβ€˜πΎ)
dibval3.h 𝐻 = (LHypβ€˜πΎ)
dibval3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dibval3.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
dibval3.o 0 = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
dibval3.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibelval3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘‹) ↔ βˆƒπ‘“ ∈ 𝑇 (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋)))
Distinct variable groups:   𝑓,𝐾   𝑔,𝐾   𝑇,𝑓   𝑓,π‘Š   𝑔,π‘Š   𝑓,𝑋   ≀ ,𝑓   𝐡,𝑓   𝑓,𝐻   0 ,𝑓   𝑇,𝑔   𝑓,𝑉   𝑓,π‘Œ
Allowed substitution hints:   𝐡(𝑔)   𝑅(𝑓,𝑔)   𝐻(𝑔)   𝐼(𝑓,𝑔)   ≀ (𝑔)   𝑉(𝑔)   𝑋(𝑔)   π‘Œ(𝑔)   0 (𝑔)

Proof of Theorem dibelval3
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dibval3.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 dibval3.l . . . 4 ≀ = (leβ€˜πΎ)
3 dibval3.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 dibval3.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 dibval3.o . . . 4 0 = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
6 eqid 2737 . . . 4 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
7 dibval3.i . . . 4 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7dibval2 39610 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (πΌβ€˜π‘‹) = ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— { 0 }))
98eleq2d 2824 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘‹) ↔ π‘Œ ∈ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— { 0 })))
10 dibval3.r . . . . . . 7 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
111, 2, 3, 4, 10, 6diaelval 39499 . . . . . 6 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ↔ (𝑓 ∈ 𝑇 ∧ (π‘…β€˜π‘“) ≀ 𝑋)))
1211anbi1d 631 . . . . 5 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ ((𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, 0 ⟩) ↔ ((𝑓 ∈ 𝑇 ∧ (π‘…β€˜π‘“) ≀ 𝑋) ∧ π‘Œ = βŸ¨π‘“, 0 ⟩)))
13 an13 646 . . . . . . . 8 ((π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, π‘ βŸ©)))
14 velsn 4603 . . . . . . . . 9 (𝑠 ∈ { 0 } ↔ 𝑠 = 0 )
1514anbi1i 625 . . . . . . . 8 ((𝑠 ∈ { 0 } ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, π‘ βŸ©)) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, π‘ βŸ©)))
1613, 15bitri 275 . . . . . . 7 ((π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ 𝑠 ∈ { 0 })) ↔ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, π‘ βŸ©)))
1716exbii 1851 . . . . . 6 (βˆƒπ‘ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ 𝑠 ∈ { 0 })) ↔ βˆƒπ‘ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, π‘ βŸ©)))
184fvexi 6857 . . . . . . . . 9 𝑇 ∈ V
1918mptex 7174 . . . . . . . 8 (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡)) ∈ V
205, 19eqeltri 2834 . . . . . . 7 0 ∈ V
21 opeq2 4832 . . . . . . . . 9 (𝑠 = 0 β†’ βŸ¨π‘“, π‘ βŸ© = βŸ¨π‘“, 0 ⟩)
2221eqeq2d 2748 . . . . . . . 8 (𝑠 = 0 β†’ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ↔ π‘Œ = βŸ¨π‘“, 0 ⟩))
2322anbi2d 630 . . . . . . 7 (𝑠 = 0 β†’ ((𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, π‘ βŸ©) ↔ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, 0 ⟩)))
2420, 23ceqsexv 3495 . . . . . 6 (βˆƒπ‘ (𝑠 = 0 ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, π‘ βŸ©)) ↔ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, 0 ⟩))
2517, 24bitri 275 . . . . 5 (βˆƒπ‘ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ π‘Œ = βŸ¨π‘“, 0 ⟩))
26 anass 470 . . . . . 6 (((𝑓 ∈ 𝑇 ∧ π‘Œ = βŸ¨π‘“, 0 ⟩) ∧ (π‘…β€˜π‘“) ≀ 𝑋) ↔ (𝑓 ∈ 𝑇 ∧ (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋)))
27 an32 645 . . . . . 6 (((𝑓 ∈ 𝑇 ∧ π‘Œ = βŸ¨π‘“, 0 ⟩) ∧ (π‘…β€˜π‘“) ≀ 𝑋) ↔ ((𝑓 ∈ 𝑇 ∧ (π‘…β€˜π‘“) ≀ 𝑋) ∧ π‘Œ = βŸ¨π‘“, 0 ⟩))
2826, 27bitr3i 277 . . . . 5 ((𝑓 ∈ 𝑇 ∧ (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋)) ↔ ((𝑓 ∈ 𝑇 ∧ (π‘…β€˜π‘“) ≀ 𝑋) ∧ π‘Œ = βŸ¨π‘“, 0 ⟩))
2912, 25, 283bitr4g 314 . . . 4 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (βˆƒπ‘ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ 𝑠 ∈ { 0 })) ↔ (𝑓 ∈ 𝑇 ∧ (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋))))
3029exbidv 1925 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (βˆƒπ‘“βˆƒπ‘ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ 𝑠 ∈ { 0 })) ↔ βˆƒπ‘“(𝑓 ∈ 𝑇 ∧ (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋))))
31 elxp 5657 . . 3 (π‘Œ ∈ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— { 0 }) ↔ βˆƒπ‘“βˆƒπ‘ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ 𝑠 ∈ { 0 })))
32 df-rex 3075 . . 3 (βˆƒπ‘“ ∈ 𝑇 (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋) ↔ βˆƒπ‘“(𝑓 ∈ 𝑇 ∧ (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋)))
3330, 31, 323bitr4g 314 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (π‘Œ ∈ ((((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) Γ— { 0 }) ↔ βˆƒπ‘“ ∈ 𝑇 (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋)))
349, 33bitrd 279 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘‹) ↔ βˆƒπ‘“ ∈ 𝑇 (π‘Œ = βŸ¨π‘“, 0 ⟩ ∧ (π‘…β€˜π‘“) ≀ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  βˆƒwrex 3074  Vcvv 3446  {csn 4587  βŸ¨cop 4593   class class class wbr 5106   ↦ cmpt 5189   I cid 5531   Γ— cxp 5632   β†Ύ cres 5636  β€˜cfv 6497  Basecbs 17084  lecple 17141  LHypclh 38450  LTrncltrn 38567  trLctrl 38624  DIsoAcdia 39494  DIsoBcdib 39604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-disoa 39495  df-dib 39605
This theorem is referenced by:  cdlemn11pre  39676  dihord2pre  39691
  Copyright terms: Public domain W3C validator