Step | Hyp | Ref
| Expression |
1 | | dibval3.b |
. . . 4
β’ π΅ = (BaseβπΎ) |
2 | | dibval3.l |
. . . 4
β’ β€ =
(leβπΎ) |
3 | | dibval3.h |
. . . 4
β’ π» = (LHypβπΎ) |
4 | | dibval3.t |
. . . 4
β’ π = ((LTrnβπΎ)βπ) |
5 | | dibval3.o |
. . . 4
β’ 0 = (π β π β¦ ( I βΎ π΅)) |
6 | | eqid 2737 |
. . . 4
β’
((DIsoAβπΎ)βπ) = ((DIsoAβπΎ)βπ) |
7 | | dibval3.i |
. . . 4
β’ πΌ = ((DIsoBβπΎ)βπ) |
8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 39610 |
. . 3
β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = ((((DIsoAβπΎ)βπ)βπ) Γ { 0 })) |
9 | 8 | eleq2d 2824 |
. 2
β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (π β (πΌβπ) β π β ((((DIsoAβπΎ)βπ)βπ) Γ { 0 }))) |
10 | | dibval3.r |
. . . . . . 7
β’ π
= ((trLβπΎ)βπ) |
11 | 1, 2, 3, 4, 10, 6 | diaelval 39499 |
. . . . . 6
β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (π β (((DIsoAβπΎ)βπ)βπ) β (π β π β§ (π
βπ) β€ π))) |
12 | 11 | anbi1d 631 |
. . . . 5
β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β ((π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, 0 β©) β ((π β π β§ (π
βπ) β€ π) β§ π = β¨π, 0 β©))) |
13 | | an13 646 |
. . . . . . . 8
β’ ((π = β¨π, π β© β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π β { 0 })) β (π β { 0 } β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, π β©))) |
14 | | velsn 4603 |
. . . . . . . . 9
β’ (π β { 0 } β π = 0 ) |
15 | 14 | anbi1i 625 |
. . . . . . . 8
β’ ((π β { 0 } β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, π β©)) β (π = 0 β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, π β©))) |
16 | 13, 15 | bitri 275 |
. . . . . . 7
β’ ((π = β¨π, π β© β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π β { 0 })) β (π = 0 β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, π β©))) |
17 | 16 | exbii 1851 |
. . . . . 6
β’
(βπ (π = β¨π, π β© β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π β { 0 })) β βπ (π = 0 β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, π β©))) |
18 | 4 | fvexi 6857 |
. . . . . . . . 9
β’ π β V |
19 | 18 | mptex 7174 |
. . . . . . . 8
β’ (π β π β¦ ( I βΎ π΅)) β V |
20 | 5, 19 | eqeltri 2834 |
. . . . . . 7
β’ 0 β
V |
21 | | opeq2 4832 |
. . . . . . . . 9
β’ (π = 0 β β¨π, π β© = β¨π, 0 β©) |
22 | 21 | eqeq2d 2748 |
. . . . . . . 8
β’ (π = 0 β (π = β¨π, π β© β π = β¨π, 0 β©)) |
23 | 22 | anbi2d 630 |
. . . . . . 7
β’ (π = 0 β ((π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, π β©) β (π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, 0 β©))) |
24 | 20, 23 | ceqsexv 3495 |
. . . . . 6
β’
(βπ (π = 0 β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, π β©)) β (π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, 0 β©)) |
25 | 17, 24 | bitri 275 |
. . . . 5
β’
(βπ (π = β¨π, π β© β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π β { 0 })) β (π β (((DIsoAβπΎ)βπ)βπ) β§ π = β¨π, 0 β©)) |
26 | | anass 470 |
. . . . . 6
β’ (((π β π β§ π = β¨π, 0 β©) β§ (π
βπ) β€ π) β (π β π β§ (π = β¨π, 0 β© β§ (π
βπ) β€ π))) |
27 | | an32 645 |
. . . . . 6
β’ (((π β π β§ π = β¨π, 0 β©) β§ (π
βπ) β€ π) β ((π β π β§ (π
βπ) β€ π) β§ π = β¨π, 0 β©)) |
28 | 26, 27 | bitr3i 277 |
. . . . 5
β’ ((π β π β§ (π = β¨π, 0 β© β§ (π
βπ) β€ π)) β ((π β π β§ (π
βπ) β€ π) β§ π = β¨π, 0 β©)) |
29 | 12, 25, 28 | 3bitr4g 314 |
. . . 4
β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (βπ (π = β¨π, π β© β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π β { 0 })) β (π β π β§ (π = β¨π, 0 β© β§ (π
βπ) β€ π)))) |
30 | 29 | exbidv 1925 |
. . 3
β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (βπβπ (π = β¨π, π β© β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π β { 0 })) β βπ(π β π β§ (π = β¨π, 0 β© β§ (π
βπ) β€ π)))) |
31 | | elxp 5657 |
. . 3
β’ (π β ((((DIsoAβπΎ)βπ)βπ) Γ { 0 }) β βπβπ (π = β¨π, π β© β§ (π β (((DIsoAβπΎ)βπ)βπ) β§ π β { 0 }))) |
32 | | df-rex 3075 |
. . 3
β’
(βπ β
π (π = β¨π, 0 β© β§ (π
βπ) β€ π) β βπ(π β π β§ (π = β¨π, 0 β© β§ (π
βπ) β€ π))) |
33 | 30, 31, 32 | 3bitr4g 314 |
. 2
β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (π β ((((DIsoAβπΎ)βπ)βπ) Γ { 0 }) β βπ β π (π = β¨π, 0 β© β§ (π
βπ) β€ π))) |
34 | 9, 33 | bitrd 279 |
1
β’ (((πΎ β π β§ π β π») β§ (π β π΅ β§ π β€ π)) β (π β (πΌβπ) β βπ β π (π = β¨π, 0 β© β§ (π
βπ) β€ π))) |