Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeliun2xp Structured version   Visualization version   GIF version

Theorem opeliun2xp 45637
Description: Membership of an ordered pair in a union of Cartesian products over its second component, analogous to opeliunxp 5655. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
opeliun2xp (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝐶𝐴))

Proof of Theorem opeliun2xp
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4932 . . 3 𝑦𝐵 (𝐴 × {𝑦}) = {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})}
21eleq2i 2832 . 2 (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ ⟨𝐶, 𝑦⟩ ∈ {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})})
3 opex 5383 . . 3 𝐶, 𝑦⟩ ∈ V
4 df-rex 3072 . . . . 5 (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑦(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})))
5 nfv 1921 . . . . . 6 𝑧(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦}))
6 nfs1v 2157 . . . . . . 7 𝑦[𝑧 / 𝑦]𝑦𝐵
7 nfcsb1v 3862 . . . . . . . . 9 𝑦𝑧 / 𝑦𝐴
8 nfcv 2909 . . . . . . . . 9 𝑦{𝑧}
97, 8nfxp 5623 . . . . . . . 8 𝑦(𝑧 / 𝑦𝐴 × {𝑧})
109nfcri 2896 . . . . . . 7 𝑦 𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})
116, 10nfan 1906 . . . . . 6 𝑦([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}))
12 sbequ12 2248 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐵 ↔ [𝑧 / 𝑦]𝑦𝐵))
13 csbeq1a 3851 . . . . . . . . 9 (𝑦 = 𝑧𝐴 = 𝑧 / 𝑦𝐴)
14 sneq 4577 . . . . . . . . 9 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1513, 14xpeq12d 5621 . . . . . . . 8 (𝑦 = 𝑧 → (𝐴 × {𝑦}) = (𝑧 / 𝑦𝐴 × {𝑧}))
1615eleq2d 2826 . . . . . . 7 (𝑦 = 𝑧 → (𝑥 ∈ (𝐴 × {𝑦}) ↔ 𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
1712, 16anbi12d 631 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})) ↔ ([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
185, 11, 17cbvexv1 2343 . . . . 5 (∃𝑦(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
194, 18bitri 274 . . . 4 (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
20 eleq1 2828 . . . . . 6 (𝑥 = ⟨𝐶, 𝑦⟩ → (𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}) ↔ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
2120anbi2d 629 . . . . 5 (𝑥 = ⟨𝐶, 𝑦⟩ → (([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
2221exbidv 1928 . . . 4 (𝑥 = ⟨𝐶, 𝑦⟩ → (∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
2319, 22syl5bb 283 . . 3 (𝑥 = ⟨𝐶, 𝑦⟩ → (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
243, 23elab 3611 . 2 (⟨𝐶, 𝑦⟩ ∈ {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})} ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
25 opelxp 5626 . . . . . 6 (⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}) ↔ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧}))
2625anbi2i 623 . . . . 5 (([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})))
27 an13 644 . . . . . 6 (([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ (𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵)))
28 ancom 461 . . . . . . 7 ((𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵) ↔ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴))
2928anbi2i 623 . . . . . 6 ((𝑦 ∈ {𝑧} ∧ (𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵)) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3027, 29bitri 274 . . . . 5 (([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
31 velsn 4583 . . . . . . 7 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
32 equcom 2025 . . . . . . 7 (𝑦 = 𝑧𝑧 = 𝑦)
3331, 32bitri 274 . . . . . 6 (𝑦 ∈ {𝑧} ↔ 𝑧 = 𝑦)
3433anbi1i 624 . . . . 5 ((𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3526, 30, 343bitri 297 . . . 4 (([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3635exbii 1854 . . 3 (∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
37 sbequ12r 2249 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝑦𝐵𝑦𝐵))
3813equcoms 2027 . . . . . . 7 (𝑧 = 𝑦𝐴 = 𝑧 / 𝑦𝐴)
3938eqcomd 2746 . . . . . 6 (𝑧 = 𝑦𝑧 / 𝑦𝐴 = 𝐴)
4039eleq2d 2826 . . . . 5 (𝑧 = 𝑦 → (𝐶𝑧 / 𝑦𝐴𝐶𝐴))
4137, 40anbi12d 631 . . . 4 (𝑧 = 𝑦 → (([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴) ↔ (𝑦𝐵𝐶𝐴)))
4241equsexvw 2012 . . 3 (∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)) ↔ (𝑦𝐵𝐶𝐴))
4336, 42bitri 274 . 2 (∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ (𝑦𝐵𝐶𝐴))
442, 24, 433bitri 297 1 (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wex 1786  [wsb 2071  wcel 2110  {cab 2717  wrex 3067  csb 3837  {csn 4567  cop 4573   ciun 4930   × cxp 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-iun 4932  df-opab 5142  df-xp 5596
This theorem is referenced by:  eliunxp2  45638
  Copyright terms: Public domain W3C validator