Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeliun2xp Structured version   Visualization version   GIF version

Theorem opeliun2xp 43751
Description: Membership of an ordered pair in a union of Cartesian products over its second component, analogous to opeliunxp 5469. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
opeliun2xp (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝐶𝐴))

Proof of Theorem opeliun2xp
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4794 . . 3 𝑦𝐵 (𝐴 × {𝑦}) = {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})}
21eleq2i 2857 . 2 (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ ⟨𝐶, 𝑦⟩ ∈ {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})})
3 opex 5213 . . 3 𝐶, 𝑦⟩ ∈ V
4 df-rex 3094 . . . . 5 (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑦(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})))
5 nfv 1873 . . . . . 6 𝑧(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦}))
6 nfs1v 2202 . . . . . . 7 𝑦[𝑧 / 𝑦]𝑦𝐵
7 nfcsb1v 3804 . . . . . . . . 9 𝑦𝑧 / 𝑦𝐴
8 nfcv 2932 . . . . . . . . 9 𝑦{𝑧}
97, 8nfxp 5440 . . . . . . . 8 𝑦(𝑧 / 𝑦𝐴 × {𝑧})
109nfcri 2926 . . . . . . 7 𝑦 𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})
116, 10nfan 1862 . . . . . 6 𝑦([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}))
12 sbequ12 2179 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐵 ↔ [𝑧 / 𝑦]𝑦𝐵))
13 csbeq1a 3795 . . . . . . . . 9 (𝑦 = 𝑧𝐴 = 𝑧 / 𝑦𝐴)
14 sneq 4451 . . . . . . . . 9 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1513, 14xpeq12d 5438 . . . . . . . 8 (𝑦 = 𝑧 → (𝐴 × {𝑦}) = (𝑧 / 𝑦𝐴 × {𝑧}))
1615eleq2d 2851 . . . . . . 7 (𝑦 = 𝑧 → (𝑥 ∈ (𝐴 × {𝑦}) ↔ 𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
1712, 16anbi12d 621 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})) ↔ ([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
185, 11, 17cbvexv1 2278 . . . . 5 (∃𝑦(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
194, 18bitri 267 . . . 4 (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
20 eleq1 2853 . . . . . 6 (𝑥 = ⟨𝐶, 𝑦⟩ → (𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}) ↔ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
2120anbi2d 619 . . . . 5 (𝑥 = ⟨𝐶, 𝑦⟩ → (([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
2221exbidv 1880 . . . 4 (𝑥 = ⟨𝐶, 𝑦⟩ → (∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
2319, 22syl5bb 275 . . 3 (𝑥 = ⟨𝐶, 𝑦⟩ → (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
243, 23elab 3582 . 2 (⟨𝐶, 𝑦⟩ ∈ {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})} ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
25 opelxp 5443 . . . . . 6 (⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}) ↔ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧}))
2625anbi2i 613 . . . . 5 (([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})))
27 an13 634 . . . . . 6 (([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ (𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵)))
28 ancom 453 . . . . . . 7 ((𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵) ↔ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴))
2928anbi2i 613 . . . . . 6 ((𝑦 ∈ {𝑧} ∧ (𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵)) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3027, 29bitri 267 . . . . 5 (([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
31 velsn 4457 . . . . . . 7 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
32 equcom 1975 . . . . . . 7 (𝑦 = 𝑧𝑧 = 𝑦)
3331, 32bitri 267 . . . . . 6 (𝑦 ∈ {𝑧} ↔ 𝑧 = 𝑦)
3433anbi1i 614 . . . . 5 ((𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3526, 30, 343bitri 289 . . . 4 (([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3635exbii 1810 . . 3 (∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
37 sbequ12r 2180 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝑦𝐵𝑦𝐵))
3813equcoms 1977 . . . . . . 7 (𝑧 = 𝑦𝐴 = 𝑧 / 𝑦𝐴)
3938eqcomd 2784 . . . . . 6 (𝑧 = 𝑦𝑧 / 𝑦𝐴 = 𝐴)
4039eleq2d 2851 . . . . 5 (𝑧 = 𝑦 → (𝐶𝑧 / 𝑦𝐴𝐶𝐴))
4137, 40anbi12d 621 . . . 4 (𝑧 = 𝑦 → (([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴) ↔ (𝑦𝐵𝐶𝐴)))
4241equsexvw 1962 . . 3 (∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)) ↔ (𝑦𝐵𝐶𝐴))
4336, 42bitri 267 . 2 (∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ (𝑦𝐵𝐶𝐴))
442, 24, 433bitri 289 1 (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  wex 1742  [wsb 2015  wcel 2050  {cab 2758  wrex 3089  csb 3786  {csn 4441  cop 4447   ciun 4792   × cxp 5405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-iun 4794  df-opab 4992  df-xp 5413
This theorem is referenced by:  eliunxp2  43752
  Copyright terms: Public domain W3C validator