Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeliun2xp Structured version   Visualization version   GIF version

Theorem opeliun2xp 45556
Description: Membership of an ordered pair in a union of Cartesian products over its second component, analogous to opeliunxp 5645. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
opeliun2xp (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝐶𝐴))

Proof of Theorem opeliun2xp
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4923 . . 3 𝑦𝐵 (𝐴 × {𝑦}) = {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})}
21eleq2i 2830 . 2 (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ ⟨𝐶, 𝑦⟩ ∈ {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})})
3 opex 5373 . . 3 𝐶, 𝑦⟩ ∈ V
4 df-rex 3069 . . . . 5 (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑦(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})))
5 nfv 1918 . . . . . 6 𝑧(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦}))
6 nfs1v 2155 . . . . . . 7 𝑦[𝑧 / 𝑦]𝑦𝐵
7 nfcsb1v 3853 . . . . . . . . 9 𝑦𝑧 / 𝑦𝐴
8 nfcv 2906 . . . . . . . . 9 𝑦{𝑧}
97, 8nfxp 5613 . . . . . . . 8 𝑦(𝑧 / 𝑦𝐴 × {𝑧})
109nfcri 2893 . . . . . . 7 𝑦 𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})
116, 10nfan 1903 . . . . . 6 𝑦([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}))
12 sbequ12 2247 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐵 ↔ [𝑧 / 𝑦]𝑦𝐵))
13 csbeq1a 3842 . . . . . . . . 9 (𝑦 = 𝑧𝐴 = 𝑧 / 𝑦𝐴)
14 sneq 4568 . . . . . . . . 9 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1513, 14xpeq12d 5611 . . . . . . . 8 (𝑦 = 𝑧 → (𝐴 × {𝑦}) = (𝑧 / 𝑦𝐴 × {𝑧}))
1615eleq2d 2824 . . . . . . 7 (𝑦 = 𝑧 → (𝑥 ∈ (𝐴 × {𝑦}) ↔ 𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
1712, 16anbi12d 630 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})) ↔ ([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
185, 11, 17cbvexv1 2341 . . . . 5 (∃𝑦(𝑦𝐵𝑥 ∈ (𝐴 × {𝑦})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
194, 18bitri 274 . . . 4 (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
20 eleq1 2826 . . . . . 6 (𝑥 = ⟨𝐶, 𝑦⟩ → (𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧}) ↔ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
2120anbi2d 628 . . . . 5 (𝑥 = ⟨𝐶, 𝑦⟩ → (([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
2221exbidv 1925 . . . 4 (𝑥 = ⟨𝐶, 𝑦⟩ → (∃𝑧([𝑧 / 𝑦]𝑦𝐵𝑥 ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
2319, 22syl5bb 282 . . 3 (𝑥 = ⟨𝐶, 𝑦⟩ → (∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}))))
243, 23elab 3602 . 2 (⟨𝐶, 𝑦⟩ ∈ {𝑥 ∣ ∃𝑦𝐵 𝑥 ∈ (𝐴 × {𝑦})} ↔ ∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})))
25 opelxp 5616 . . . . . 6 (⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧}) ↔ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧}))
2625anbi2i 622 . . . . 5 (([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})))
27 an13 643 . . . . . 6 (([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ (𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵)))
28 ancom 460 . . . . . . 7 ((𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵) ↔ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴))
2928anbi2i 622 . . . . . 6 ((𝑦 ∈ {𝑧} ∧ (𝐶𝑧 / 𝑦𝐴 ∧ [𝑧 / 𝑦]𝑦𝐵)) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3027, 29bitri 274 . . . . 5 (([𝑧 / 𝑦]𝑦𝐵 ∧ (𝐶𝑧 / 𝑦𝐴𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
31 velsn 4574 . . . . . . 7 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
32 equcom 2022 . . . . . . 7 (𝑦 = 𝑧𝑧 = 𝑦)
3331, 32bitri 274 . . . . . 6 (𝑦 ∈ {𝑧} ↔ 𝑧 = 𝑦)
3433anbi1i 623 . . . . 5 ((𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3526, 30, 343bitri 296 . . . 4 (([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
3635exbii 1851 . . 3 (∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)))
37 sbequ12r 2248 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝑦𝐵𝑦𝐵))
3813equcoms 2024 . . . . . . 7 (𝑧 = 𝑦𝐴 = 𝑧 / 𝑦𝐴)
3938eqcomd 2744 . . . . . 6 (𝑧 = 𝑦𝑧 / 𝑦𝐴 = 𝐴)
4039eleq2d 2824 . . . . 5 (𝑧 = 𝑦 → (𝐶𝑧 / 𝑦𝐴𝐶𝐴))
4137, 40anbi12d 630 . . . 4 (𝑧 = 𝑦 → (([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴) ↔ (𝑦𝐵𝐶𝐴)))
4241equsexvw 2009 . . 3 (∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦𝐵𝐶𝑧 / 𝑦𝐴)) ↔ (𝑦𝐵𝐶𝐴))
4336, 42bitri 274 . 2 (∃𝑧([𝑧 / 𝑦]𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ (𝑧 / 𝑦𝐴 × {𝑧})) ↔ (𝑦𝐵𝐶𝐴))
442, 24, 433bitri 296 1 (⟨𝐶, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  {cab 2715  wrex 3064  csb 3828  {csn 4558  cop 4564   ciun 4921   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-iun 4923  df-opab 5133  df-xp 5586
This theorem is referenced by:  eliunxp2  45557
  Copyright terms: Public domain W3C validator