Step | Hyp | Ref
| Expression |
1 | | df-iun 4923 |
. . 3
⊢ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 ∈ (𝐴 × {𝑦})} |
2 | 1 | eleq2i 2830 |
. 2
⊢
(〈𝐶, 𝑦〉 ∈ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ↔ 〈𝐶, 𝑦〉 ∈ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 ∈ (𝐴 × {𝑦})}) |
3 | | opex 5373 |
. . 3
⊢
〈𝐶, 𝑦〉 ∈ V |
4 | | df-rex 3069 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 × {𝑦}))) |
5 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑧(𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 × {𝑦})) |
6 | | nfs1v 2155 |
. . . . . . 7
⊢
Ⅎ𝑦[𝑧 / 𝑦]𝑦 ∈ 𝐵 |
7 | | nfcsb1v 3853 |
. . . . . . . . 9
⊢
Ⅎ𝑦⦋𝑧 / 𝑦⦌𝐴 |
8 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑦{𝑧} |
9 | 7, 8 | nfxp 5613 |
. . . . . . . 8
⊢
Ⅎ𝑦(⦋𝑧 / 𝑦⦌𝐴 × {𝑧}) |
10 | 9 | nfcri 2893 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑥 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧}) |
11 | 6, 10 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑦([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})) |
12 | | sbequ12 2247 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐵 ↔ [𝑧 / 𝑦]𝑦 ∈ 𝐵)) |
13 | | csbeq1a 3842 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → 𝐴 = ⦋𝑧 / 𝑦⦌𝐴) |
14 | | sneq 4568 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) |
15 | 13, 14 | xpeq12d 5611 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝐴 × {𝑦}) = (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})) |
16 | 15 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑥 ∈ (𝐴 × {𝑦}) ↔ 𝑥 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧}))) |
17 | 12, 16 | anbi12d 630 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 × {𝑦})) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})))) |
18 | 5, 11, 17 | cbvexv1 2341 |
. . . . 5
⊢
(∃𝑦(𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝐴 × {𝑦})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧}))) |
19 | 4, 18 | bitri 274 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧}))) |
20 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 〈𝐶, 𝑦〉 → (𝑥 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧}) ↔ 〈𝐶, 𝑦〉 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧}))) |
21 | 20 | anbi2d 628 |
. . . . 5
⊢ (𝑥 = 〈𝐶, 𝑦〉 → (([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})))) |
22 | 21 | exbidv 1925 |
. . . 4
⊢ (𝑥 = 〈𝐶, 𝑦〉 → (∃𝑧([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})) ↔ ∃𝑧([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})))) |
23 | 19, 22 | syl5bb 282 |
. . 3
⊢ (𝑥 = 〈𝐶, 𝑦〉 → (∃𝑦 ∈ 𝐵 𝑥 ∈ (𝐴 × {𝑦}) ↔ ∃𝑧([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})))) |
24 | 3, 23 | elab 3602 |
. 2
⊢
(〈𝐶, 𝑦〉 ∈ {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 ∈ (𝐴 × {𝑦})} ↔ ∃𝑧([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧}))) |
25 | | opelxp 5616 |
. . . . . 6
⊢
(〈𝐶, 𝑦〉 ∈
(⦋𝑧 / 𝑦⦌𝐴 × {𝑧}) ↔ (𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴 ∧ 𝑦 ∈ {𝑧})) |
26 | 25 | anbi2i 622 |
. . . . 5
⊢ (([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ (𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴 ∧ 𝑦 ∈ {𝑧}))) |
27 | | an13 643 |
. . . . . 6
⊢ (([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ (𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴 ∧ 𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ (𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴 ∧ [𝑧 / 𝑦]𝑦 ∈ 𝐵))) |
28 | | ancom 460 |
. . . . . . 7
⊢ ((𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴 ∧ [𝑧 / 𝑦]𝑦 ∈ 𝐵) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴)) |
29 | 28 | anbi2i 622 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑧} ∧ (𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴 ∧ [𝑧 / 𝑦]𝑦 ∈ 𝐵)) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴))) |
30 | 27, 29 | bitri 274 |
. . . . 5
⊢ (([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ (𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴 ∧ 𝑦 ∈ {𝑧})) ↔ (𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴))) |
31 | | velsn 4574 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧) |
32 | | equcom 2022 |
. . . . . . 7
⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) |
33 | 31, 32 | bitri 274 |
. . . . . 6
⊢ (𝑦 ∈ {𝑧} ↔ 𝑧 = 𝑦) |
34 | 33 | anbi1i 623 |
. . . . 5
⊢ ((𝑦 ∈ {𝑧} ∧ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴)) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴))) |
35 | 26, 30, 34 | 3bitri 296 |
. . . 4
⊢ (([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})) ↔ (𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴))) |
36 | 35 | exbii 1851 |
. . 3
⊢
(∃𝑧([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴))) |
37 | | sbequ12r 2248 |
. . . . 5
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
38 | 13 | equcoms 2024 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → 𝐴 = ⦋𝑧 / 𝑦⦌𝐴) |
39 | 38 | eqcomd 2744 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ⦋𝑧 / 𝑦⦌𝐴 = 𝐴) |
40 | 39 | eleq2d 2824 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴 ↔ 𝐶 ∈ 𝐴)) |
41 | 37, 40 | anbi12d 630 |
. . . 4
⊢ (𝑧 = 𝑦 → (([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴) ↔ (𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴))) |
42 | 41 | equsexvw 2009 |
. . 3
⊢
(∃𝑧(𝑧 = 𝑦 ∧ ([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 𝐶 ∈ ⦋𝑧 / 𝑦⦌𝐴)) ↔ (𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴)) |
43 | 36, 42 | bitri 274 |
. 2
⊢
(∃𝑧([𝑧 / 𝑦]𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ (⦋𝑧 / 𝑦⦌𝐴 × {𝑧})) ↔ (𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴)) |
44 | 2, 24, 43 | 3bitri 296 |
1
⊢
(〈𝐶, 𝑦〉 ∈ ∪ 𝑦 ∈ 𝐵 (𝐴 × {𝑦}) ↔ (𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴)) |