Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln5 Structured version   Visualization version   GIF version

Theorem islpln5 39537
Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
islpln5.b 𝐵 = (Base‘𝐾)
islpln5.l = (le‘𝐾)
islpln5.j = (join‘𝐾)
islpln5.a 𝐴 = (Atoms‘𝐾)
islpln5.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝐴   𝐵,𝑝,𝑞,𝑟   ,𝑝,𝑞,𝑟   𝐾,𝑝,𝑞,𝑟   ,𝑝,𝑞,𝑟   𝑋,𝑝,𝑞,𝑟
Allowed substitution hints:   𝑃(𝑟,𝑞,𝑝)

Proof of Theorem islpln5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 islpln5.b . . 3 𝐵 = (Base‘𝐾)
2 islpln5.l . . 3 = (le‘𝐾)
3 islpln5.j . . 3 = (join‘𝐾)
4 islpln5.a . . 3 𝐴 = (Atoms‘𝐾)
5 eqid 2737 . . 3 (LLines‘𝐾) = (LLines‘𝐾)
6 islpln5.p . . 3 𝑃 = (LPlanes‘𝐾)
71, 2, 3, 4, 5, 6islpln3 39535 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
8 df-rex 3071 . . 3 (∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
9 r19.41v 3189 . . . . . . . . . 10 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
10 an13 647 . . . . . . . . . 10 ((∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
119, 10bitri 275 . . . . . . . . 9 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
1211exbii 1848 . . . . . . . 8 (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦(𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
13 ovex 7464 . . . . . . . . 9 (𝑝 𝑞) ∈ V
14 an12 645 . . . . . . . . . . . 12 ((𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ (𝑦𝐵 ∧ (𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
15 eleq1 2829 . . . . . . . . . . . . 13 (𝑦 = (𝑝 𝑞) → (𝑦𝐵 ↔ (𝑝 𝑞) ∈ 𝐵))
16 breq2 5147 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑝 𝑞) → (𝑟 𝑦𝑟 (𝑝 𝑞)))
1716notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑝 𝑞) → (¬ 𝑟 𝑦 ↔ ¬ 𝑟 (𝑝 𝑞)))
18 oveq1 7438 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑝 𝑞) → (𝑦 𝑟) = ((𝑝 𝑞) 𝑟))
1918eqeq2d 2748 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑝 𝑞) → (𝑋 = (𝑦 𝑟) ↔ 𝑋 = ((𝑝 𝑞) 𝑟)))
2017, 19anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = (𝑝 𝑞) → ((¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2120anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑝𝑞 ∧ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
22 3anass 1095 . . . . . . . . . . . . . 14 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2321, 22bitr4di 289 . . . . . . . . . . . . 13 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2415, 23anbi12d 632 . . . . . . . . . . . 12 (𝑦 = (𝑝 𝑞) → ((𝑦𝐵 ∧ (𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
2514, 24bitrid 283 . . . . . . . . . . 11 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
2625rexbidv 3179 . . . . . . . . . 10 (𝑦 = (𝑝 𝑞) → (∃𝑟𝐴 (𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ∃𝑟𝐴 ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
27 r19.42v 3191 . . . . . . . . . 10 (∃𝑟𝐴 (𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
28 r19.42v 3191 . . . . . . . . . 10 (∃𝑟𝐴 ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2926, 27, 283bitr3g 313 . . . . . . . . 9 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
3013, 29ceqsexv 3532 . . . . . . . 8 (∃𝑦(𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
3112, 30bitri 275 . . . . . . 7 (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
32 simpll 767 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝐾 ∈ HL)
33 simprl 771 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑝𝐴)
34 simprr 773 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑞𝐴)
351, 3, 4hlatjcl 39368 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ 𝐵)
3632, 33, 34, 35syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (𝑝 𝑞) ∈ 𝐵)
3736biantrurd 532 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
3831, 37bitr4id 290 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
39382rexbidva 3220 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
40 rexcom4 3288 . . . . . . 7 (∃𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4140rexbii 3094 . . . . . 6 (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
42 rexcom4 3288 . . . . . 6 (∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4341, 42bitri 275 . . . . 5 (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4439, 43bitr3di 286 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
45 rexcom 3290 . . . . . . . . 9 (∃𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4645rexbii 3094 . . . . . . . 8 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
47 rexcom 3290 . . . . . . . 8 (∃𝑝𝐴𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4846, 47bitri 275 . . . . . . 7 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
491, 3, 4, 5islln2 39513 . . . . . . . . . . 11 (𝐾 ∈ HL → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5049adantr 480 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5150anbi1d 631 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
52 r19.42v 3191 . . . . . . . . . 10 (∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
53 r19.42v 3191 . . . . . . . . . . 11 (∃𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
5453rexbii 3094 . . . . . . . . . 10 (∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
55 an32 646 . . . . . . . . . 10 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
5652, 54, 553bitr4ri 304 . . . . . . . . 9 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
5751, 56bitrdi 287 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5857rexbidv 3179 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5948, 58bitr4id 290 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
60 r19.42v 3191 . . . . . 6 (∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
6159, 60bitrdi 287 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
6261exbidv 1921 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
6344, 62bitrd 279 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
648, 63bitr4id 290 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
657, 64bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  Atomscatm 39264  HLchlt 39351  LLinesclln 39493  LPlanesclpl 39494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501
This theorem is referenced by:  islpln2  39538  lplni2  39539
  Copyright terms: Public domain W3C validator