Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln5 Structured version   Visualization version   GIF version

Theorem islpln5 39514
Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
islpln5.b 𝐵 = (Base‘𝐾)
islpln5.l = (le‘𝐾)
islpln5.j = (join‘𝐾)
islpln5.a 𝐴 = (Atoms‘𝐾)
islpln5.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝐴   𝐵,𝑝,𝑞,𝑟   ,𝑝,𝑞,𝑟   𝐾,𝑝,𝑞,𝑟   ,𝑝,𝑞,𝑟   𝑋,𝑝,𝑞,𝑟
Allowed substitution hints:   𝑃(𝑟,𝑞,𝑝)

Proof of Theorem islpln5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 islpln5.b . . 3 𝐵 = (Base‘𝐾)
2 islpln5.l . . 3 = (le‘𝐾)
3 islpln5.j . . 3 = (join‘𝐾)
4 islpln5.a . . 3 𝐴 = (Atoms‘𝐾)
5 eqid 2729 . . 3 (LLines‘𝐾) = (LLines‘𝐾)
6 islpln5.p . . 3 𝑃 = (LPlanes‘𝐾)
71, 2, 3, 4, 5, 6islpln3 39512 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
8 df-rex 3054 . . 3 (∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
9 r19.41v 3159 . . . . . . . . . 10 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
10 an13 647 . . . . . . . . . 10 ((∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
119, 10bitri 275 . . . . . . . . 9 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
1211exbii 1848 . . . . . . . 8 (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦(𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
13 ovex 7386 . . . . . . . . 9 (𝑝 𝑞) ∈ V
14 an12 645 . . . . . . . . . . . 12 ((𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ (𝑦𝐵 ∧ (𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
15 eleq1 2816 . . . . . . . . . . . . 13 (𝑦 = (𝑝 𝑞) → (𝑦𝐵 ↔ (𝑝 𝑞) ∈ 𝐵))
16 breq2 5099 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑝 𝑞) → (𝑟 𝑦𝑟 (𝑝 𝑞)))
1716notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑝 𝑞) → (¬ 𝑟 𝑦 ↔ ¬ 𝑟 (𝑝 𝑞)))
18 oveq1 7360 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑝 𝑞) → (𝑦 𝑟) = ((𝑝 𝑞) 𝑟))
1918eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑝 𝑞) → (𝑋 = (𝑦 𝑟) ↔ 𝑋 = ((𝑝 𝑞) 𝑟)))
2017, 19anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = (𝑝 𝑞) → ((¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2120anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑝𝑞 ∧ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
22 3anass 1094 . . . . . . . . . . . . . 14 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2321, 22bitr4di 289 . . . . . . . . . . . . 13 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2415, 23anbi12d 632 . . . . . . . . . . . 12 (𝑦 = (𝑝 𝑞) → ((𝑦𝐵 ∧ (𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
2514, 24bitrid 283 . . . . . . . . . . 11 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
2625rexbidv 3153 . . . . . . . . . 10 (𝑦 = (𝑝 𝑞) → (∃𝑟𝐴 (𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ∃𝑟𝐴 ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
27 r19.42v 3161 . . . . . . . . . 10 (∃𝑟𝐴 (𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
28 r19.42v 3161 . . . . . . . . . 10 (∃𝑟𝐴 ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2926, 27, 283bitr3g 313 . . . . . . . . 9 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
3013, 29ceqsexv 3489 . . . . . . . 8 (∃𝑦(𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
3112, 30bitri 275 . . . . . . 7 (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
32 simpll 766 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝐾 ∈ HL)
33 simprl 770 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑝𝐴)
34 simprr 772 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑞𝐴)
351, 3, 4hlatjcl 39345 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ 𝐵)
3632, 33, 34, 35syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (𝑝 𝑞) ∈ 𝐵)
3736biantrurd 532 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
3831, 37bitr4id 290 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
39382rexbidva 3192 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
40 rexcom4 3256 . . . . . . 7 (∃𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4140rexbii 3076 . . . . . 6 (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
42 rexcom4 3256 . . . . . 6 (∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4341, 42bitri 275 . . . . 5 (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4439, 43bitr3di 286 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
45 rexcom 3258 . . . . . . . . 9 (∃𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4645rexbii 3076 . . . . . . . 8 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
47 rexcom 3258 . . . . . . . 8 (∃𝑝𝐴𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4846, 47bitri 275 . . . . . . 7 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
491, 3, 4, 5islln2 39490 . . . . . . . . . . 11 (𝐾 ∈ HL → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5049adantr 480 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5150anbi1d 631 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
52 r19.42v 3161 . . . . . . . . . 10 (∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
53 r19.42v 3161 . . . . . . . . . . 11 (∃𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
5453rexbii 3076 . . . . . . . . . 10 (∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
55 an32 646 . . . . . . . . . 10 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
5652, 54, 553bitr4ri 304 . . . . . . . . 9 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
5751, 56bitrdi 287 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5857rexbidv 3153 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5948, 58bitr4id 290 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
60 r19.42v 3161 . . . . . 6 (∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
6159, 60bitrdi 287 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
6261exbidv 1921 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
6344, 62bitrd 279 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
648, 63bitr4id 290 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
657, 64bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  Atomscatm 39241  HLchlt 39328  LLinesclln 39470  LPlanesclpl 39471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478
This theorem is referenced by:  islpln2  39515  lplni2  39516
  Copyright terms: Public domain W3C validator