Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln5 Structured version   Visualization version   GIF version

Theorem islpln5 36663
Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
islpln5.b 𝐵 = (Base‘𝐾)
islpln5.l = (le‘𝐾)
islpln5.j = (join‘𝐾)
islpln5.a 𝐴 = (Atoms‘𝐾)
islpln5.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝐴   𝐵,𝑝,𝑞,𝑟   ,𝑝,𝑞,𝑟   𝐾,𝑝,𝑞,𝑟   ,𝑝,𝑞,𝑟   𝑋,𝑝,𝑞,𝑟
Allowed substitution hints:   𝑃(𝑟,𝑞,𝑝)

Proof of Theorem islpln5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 islpln5.b . . 3 𝐵 = (Base‘𝐾)
2 islpln5.l . . 3 = (le‘𝐾)
3 islpln5.j . . 3 = (join‘𝐾)
4 islpln5.a . . 3 𝐴 = (Atoms‘𝐾)
5 eqid 2819 . . 3 (LLines‘𝐾) = (LLines‘𝐾)
6 islpln5.p . . 3 𝑃 = (LPlanes‘𝐾)
71, 2, 3, 4, 5, 6islpln3 36661 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
8 rexcom4 3247 . . . . . . 7 (∃𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
98rexbii 3245 . . . . . 6 (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
10 rexcom4 3247 . . . . . 6 (∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
119, 10bitri 277 . . . . 5 (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
12 simpll 765 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝐾 ∈ HL)
13 simprl 769 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑝𝐴)
14 simprr 771 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑞𝐴)
151, 3, 4hlatjcl 36495 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ 𝐵)
1612, 13, 14, 15syl3anc 1366 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (𝑝 𝑞) ∈ 𝐵)
1716biantrurd 535 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
18 r19.41v 3345 . . . . . . . . . 10 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
19 an13 645 . . . . . . . . . 10 ((∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
2018, 19bitri 277 . . . . . . . . 9 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
2120exbii 1842 . . . . . . . 8 (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦(𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
22 ovex 7181 . . . . . . . . 9 (𝑝 𝑞) ∈ V
23 an12 643 . . . . . . . . . . . 12 ((𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ (𝑦𝐵 ∧ (𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
24 eleq1 2898 . . . . . . . . . . . . 13 (𝑦 = (𝑝 𝑞) → (𝑦𝐵 ↔ (𝑝 𝑞) ∈ 𝐵))
25 breq2 5061 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑝 𝑞) → (𝑟 𝑦𝑟 (𝑝 𝑞)))
2625notbid 320 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑝 𝑞) → (¬ 𝑟 𝑦 ↔ ¬ 𝑟 (𝑝 𝑞)))
27 oveq1 7155 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑝 𝑞) → (𝑦 𝑟) = ((𝑝 𝑞) 𝑟))
2827eqeq2d 2830 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑝 𝑞) → (𝑋 = (𝑦 𝑟) ↔ 𝑋 = ((𝑝 𝑞) 𝑟)))
2926, 28anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = (𝑝 𝑞) → ((¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
3029anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑝𝑞 ∧ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
31 3anass 1090 . . . . . . . . . . . . . 14 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
3230, 31syl6bbr 291 . . . . . . . . . . . . 13 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
3324, 32anbi12d 632 . . . . . . . . . . . 12 (𝑦 = (𝑝 𝑞) → ((𝑦𝐵 ∧ (𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
3423, 33syl5bb 285 . . . . . . . . . . 11 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
3534rexbidv 3295 . . . . . . . . . 10 (𝑦 = (𝑝 𝑞) → (∃𝑟𝐴 (𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ∃𝑟𝐴 ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
36 r19.42v 3348 . . . . . . . . . 10 (∃𝑟𝐴 (𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
37 r19.42v 3348 . . . . . . . . . 10 (∃𝑟𝐴 ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
3835, 36, 373bitr3g 315 . . . . . . . . 9 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
3922, 38ceqsexv 3540 . . . . . . . 8 (∃𝑦(𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
4021, 39bitri 277 . . . . . . 7 (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
4117, 40syl6rbbr 292 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
42412rexbidva 3297 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
4311, 42syl5rbbr 288 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
441, 3, 4, 5islln2 36639 . . . . . . . . . . 11 (𝐾 ∈ HL → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞)))))
4544adantr 483 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞)))))
4645anbi1d 631 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
47 r19.42v 3348 . . . . . . . . . 10 (∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
48 r19.42v 3348 . . . . . . . . . . 11 (∃𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
4948rexbii 3245 . . . . . . . . . 10 (∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
50 an32 644 . . . . . . . . . 10 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
5147, 49, 503bitr4ri 306 . . . . . . . . 9 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
5246, 51syl6bb 289 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5352rexbidv 3295 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
54 rexcom 3353 . . . . . . . . 9 (∃𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
5554rexbii 3245 . . . . . . . 8 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
56 rexcom 3353 . . . . . . . 8 (∃𝑝𝐴𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
5755, 56bitri 277 . . . . . . 7 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
5853, 57syl6rbbr 292 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
59 r19.42v 3348 . . . . . 6 (∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
6058, 59syl6bb 289 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
6160exbidv 1916 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
6243, 61bitrd 281 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
63 df-rex 3142 . . 3 (∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
6462, 63syl6rbbr 292 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
657, 64bitrd 281 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wex 1774  wcel 2108  wne 3014  wrex 3137   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  joincjn 17546  Atomscatm 36391  HLchlt 36478  LLinesclln 36619  LPlanesclpl 36620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-llines 36626  df-lplanes 36627
This theorem is referenced by:  islpln2  36664  lplni2  36665
  Copyright terms: Public domain W3C validator