Step | Hyp | Ref
| Expression |
1 | | islpln5.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | islpln5.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | islpln5.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
4 | | islpln5.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | eqid 2739 |
. . 3
⊢
(LLines‘𝐾) =
(LLines‘𝐾) |
6 | | islpln5.p |
. . 3
⊢ 𝑃 = (LPlanes‘𝐾) |
7 | 1, 2, 3, 4, 5, 6 | islpln3 37554 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ (LLines‘𝐾)∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))) |
8 | | df-rex 3071 |
. . 3
⊢
(∃𝑦 ∈
(LLines‘𝐾)∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))) |
9 | | r19.41v 3277 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ (∃𝑟 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
10 | | an13 644 |
. . . . . . . . . 10
⊢
((∃𝑟 ∈
𝐴 (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ (𝑦 = (𝑝 ∨ 𝑞) ∧ (𝑝 ≠ 𝑞 ∧ ∃𝑟 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))))) |
11 | 9, 10 | bitri 274 |
. . . . . . . . 9
⊢
(∃𝑟 ∈
𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ (𝑦 = (𝑝 ∨ 𝑞) ∧ (𝑝 ≠ 𝑞 ∧ ∃𝑟 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))))) |
12 | 11 | exbii 1851 |
. . . . . . . 8
⊢
(∃𝑦∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑦(𝑦 = (𝑝 ∨ 𝑞) ∧ (𝑝 ≠ 𝑞 ∧ ∃𝑟 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))))) |
13 | | ovex 7317 |
. . . . . . . . 9
⊢ (𝑝 ∨ 𝑞) ∈ V |
14 | | an12 642 |
. . . . . . . . . . . 12
⊢ ((𝑝 ≠ 𝑞 ∧ (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))) ↔ (𝑦 ∈ 𝐵 ∧ (𝑝 ≠ 𝑞 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))))) |
15 | | eleq1 2827 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑝 ∨ 𝑞) → (𝑦 ∈ 𝐵 ↔ (𝑝 ∨ 𝑞) ∈ 𝐵)) |
16 | | breq2 5079 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑝 ∨ 𝑞) → (𝑟 ≤ 𝑦 ↔ 𝑟 ≤ (𝑝 ∨ 𝑞))) |
17 | 16 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑝 ∨ 𝑞) → (¬ 𝑟 ≤ 𝑦 ↔ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞))) |
18 | | oveq1 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑝 ∨ 𝑞) → (𝑦 ∨ 𝑟) = ((𝑝 ∨ 𝑞) ∨ 𝑟)) |
19 | 18 | eqeq2d 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑝 ∨ 𝑞) → (𝑋 = (𝑦 ∨ 𝑟) ↔ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))) |
20 | 17, 19 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑝 ∨ 𝑞) → ((¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)) ↔ (¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
21 | 20 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑝 ∨ 𝑞) → ((𝑝 ≠ 𝑞 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ↔ (𝑝 ≠ 𝑞 ∧ (¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
22 | | 3anass 1094 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)) ↔ (𝑝 ≠ 𝑞 ∧ (¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
23 | 21, 22 | bitr4di 289 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑝 ∨ 𝑞) → ((𝑝 ≠ 𝑞 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ↔ (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
24 | 15, 23 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑝 ∨ 𝑞) → ((𝑦 ∈ 𝐵 ∧ (𝑝 ≠ 𝑞 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))) ↔ ((𝑝 ∨ 𝑞) ∈ 𝐵 ∧ (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
25 | 14, 24 | syl5bb 283 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑝 ∨ 𝑞) → ((𝑝 ≠ 𝑞 ∧ (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))) ↔ ((𝑝 ∨ 𝑞) ∈ 𝐵 ∧ (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
26 | 25 | rexbidv 3227 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑝 ∨ 𝑞) → (∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))) ↔ ∃𝑟 ∈ 𝐴 ((𝑝 ∨ 𝑞) ∈ 𝐵 ∧ (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
27 | | r19.42v 3280 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝐴 (𝑝 ≠ 𝑞 ∧ (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))) ↔ (𝑝 ≠ 𝑞 ∧ ∃𝑟 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))))) |
28 | | r19.42v 3280 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝐴 ((𝑝 ∨ 𝑞) ∈ 𝐵 ∧ (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))) ↔ ((𝑝 ∨ 𝑞) ∈ 𝐵 ∧ ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
29 | 26, 27, 28 | 3bitr3g 313 |
. . . . . . . . 9
⊢ (𝑦 = (𝑝 ∨ 𝑞) → ((𝑝 ≠ 𝑞 ∧ ∃𝑟 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))) ↔ ((𝑝 ∨ 𝑞) ∈ 𝐵 ∧ ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
30 | 13, 29 | ceqsexv 3480 |
. . . . . . . 8
⊢
(∃𝑦(𝑦 = (𝑝 ∨ 𝑞) ∧ (𝑝 ≠ 𝑞 ∧ ∃𝑟 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))))) ↔ ((𝑝 ∨ 𝑞) ∈ 𝐵 ∧ ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
31 | 12, 30 | bitri 274 |
. . . . . . 7
⊢
(∃𝑦∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ((𝑝 ∨ 𝑞) ∈ 𝐵 ∧ ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
32 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝐾 ∈ HL) |
33 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑝 ∈ 𝐴) |
34 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → 𝑞 ∈ 𝐴) |
35 | 1, 3, 4 | hlatjcl 37388 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) → (𝑝 ∨ 𝑞) ∈ 𝐵) |
36 | 32, 33, 34, 35 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (𝑝 ∨ 𝑞) ∈ 𝐵) |
37 | 36 | biantrurd 533 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)) ↔ ((𝑝 ∨ 𝑞) ∈ 𝐵 ∧ ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
38 | 31, 37 | bitr4id 290 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴)) → (∃𝑦∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
39 | 38 | 2rexbidva 3229 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑦∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
40 | | rexcom4 3234 |
. . . . . . 7
⊢
(∃𝑞 ∈
𝐴 ∃𝑦∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑦∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
41 | 40 | rexbii 3182 |
. . . . . 6
⊢
(∃𝑝 ∈
𝐴 ∃𝑞 ∈ 𝐴 ∃𝑦∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑦∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
42 | | rexcom4 3234 |
. . . . . 6
⊢
(∃𝑝 ∈
𝐴 ∃𝑦∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑦∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
43 | 41, 42 | bitri 274 |
. . . . 5
⊢
(∃𝑝 ∈
𝐴 ∃𝑞 ∈ 𝐴 ∃𝑦∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑦∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
44 | 39, 43 | bitr3di 286 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)) ↔ ∃𝑦∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))))) |
45 | | rexcom 3235 |
. . . . . . . . 9
⊢
(∃𝑞 ∈
𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑟 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
46 | 45 | rexbii 3182 |
. . . . . . . 8
⊢
(∃𝑝 ∈
𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
47 | | rexcom 3235 |
. . . . . . . 8
⊢
(∃𝑝 ∈
𝐴 ∃𝑟 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑟 ∈ 𝐴 ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
48 | 46, 47 | bitri 274 |
. . . . . . 7
⊢
(∃𝑝 ∈
𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑟 ∈ 𝐴 ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
49 | 1, 3, 4, 5 | islln2 37532 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))))) |
50 | 49 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))))) |
51 | 50 | anbi1d 630 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ↔ ((𝑦 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))))) |
52 | | r19.42v 3280 |
. . . . . . . . . 10
⊢
(∃𝑝 ∈
𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
53 | | r19.42v 3280 |
. . . . . . . . . . 11
⊢
(∃𝑞 ∈
𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
54 | 53 | rexbii 3182 |
. . . . . . . . . 10
⊢
(∃𝑝 ∈
𝐴 ∃𝑞 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑝 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
55 | | an32 643 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ↔ ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
56 | 52, 54, 55 | 3bitr4ri 304 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞)))) |
57 | 51, 56 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))))) |
58 | 57 | rexbidv 3227 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑟 ∈ 𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ↔ ∃𝑟 ∈ 𝐴 ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))))) |
59 | 48, 58 | bitr4id 290 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑟 ∈ 𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))))) |
60 | | r19.42v 3280 |
. . . . . 6
⊢
(∃𝑟 ∈
𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)))) |
61 | 59, 60 | bitrdi 287 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))))) |
62 | 61 | exbidv 1925 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑦∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))) ∧ (𝑝 ≠ 𝑞 ∧ 𝑦 = (𝑝 ∨ 𝑞))) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))))) |
63 | 44, 62 | bitrd 278 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟))))) |
64 | 8, 63 | bitr4id 290 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ (LLines‘𝐾)∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑟)) ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
65 | 7, 64 | bitrd 278 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |