Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln5 Structured version   Visualization version   GIF version

Theorem islpln5 39536
Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.)
Hypotheses
Ref Expression
islpln5.b 𝐵 = (Base‘𝐾)
islpln5.l = (le‘𝐾)
islpln5.j = (join‘𝐾)
islpln5.a 𝐴 = (Atoms‘𝐾)
islpln5.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝐴   𝐵,𝑝,𝑞,𝑟   ,𝑝,𝑞,𝑟   𝐾,𝑝,𝑞,𝑟   ,𝑝,𝑞,𝑟   𝑋,𝑝,𝑞,𝑟
Allowed substitution hints:   𝑃(𝑟,𝑞,𝑝)

Proof of Theorem islpln5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 islpln5.b . . 3 𝐵 = (Base‘𝐾)
2 islpln5.l . . 3 = (le‘𝐾)
3 islpln5.j . . 3 = (join‘𝐾)
4 islpln5.a . . 3 𝐴 = (Atoms‘𝐾)
5 eqid 2730 . . 3 (LLines‘𝐾) = (LLines‘𝐾)
6 islpln5.p . . 3 𝑃 = (LPlanes‘𝐾)
71, 2, 3, 4, 5, 6islpln3 39534 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
8 df-rex 3055 . . 3 (∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
9 r19.41v 3168 . . . . . . . . . 10 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
10 an13 647 . . . . . . . . . 10 ((∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
119, 10bitri 275 . . . . . . . . 9 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
1211exbii 1848 . . . . . . . 8 (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦(𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))))
13 ovex 7423 . . . . . . . . 9 (𝑝 𝑞) ∈ V
14 an12 645 . . . . . . . . . . . 12 ((𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ (𝑦𝐵 ∧ (𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
15 eleq1 2817 . . . . . . . . . . . . 13 (𝑦 = (𝑝 𝑞) → (𝑦𝐵 ↔ (𝑝 𝑞) ∈ 𝐵))
16 breq2 5114 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑝 𝑞) → (𝑟 𝑦𝑟 (𝑝 𝑞)))
1716notbid 318 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑝 𝑞) → (¬ 𝑟 𝑦 ↔ ¬ 𝑟 (𝑝 𝑞)))
18 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑝 𝑞) → (𝑦 𝑟) = ((𝑝 𝑞) 𝑟))
1918eqeq2d 2741 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑝 𝑞) → (𝑋 = (𝑦 𝑟) ↔ 𝑋 = ((𝑝 𝑞) 𝑟)))
2017, 19anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = (𝑝 𝑞) → ((¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2120anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑝𝑞 ∧ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
22 3anass 1094 . . . . . . . . . . . . . 14 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ (¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2321, 22bitr4di 289 . . . . . . . . . . . . 13 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2415, 23anbi12d 632 . . . . . . . . . . . 12 (𝑦 = (𝑝 𝑞) → ((𝑦𝐵 ∧ (𝑝𝑞 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
2514, 24bitrid 283 . . . . . . . . . . 11 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
2625rexbidv 3158 . . . . . . . . . 10 (𝑦 = (𝑝 𝑞) → (∃𝑟𝐴 (𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ∃𝑟𝐴 ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
27 r19.42v 3170 . . . . . . . . . 10 (∃𝑟𝐴 (𝑝𝑞 ∧ (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
28 r19.42v 3170 . . . . . . . . . 10 (∃𝑟𝐴 ((𝑝 𝑞) ∈ 𝐵 ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
2926, 27, 283bitr3g 313 . . . . . . . . 9 (𝑦 = (𝑝 𝑞) → ((𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
3013, 29ceqsexv 3501 . . . . . . . 8 (∃𝑦(𝑦 = (𝑝 𝑞) ∧ (𝑝𝑞 ∧ ∃𝑟𝐴 (𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
3112, 30bitri 275 . . . . . . 7 (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
32 simpll 766 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝐾 ∈ HL)
33 simprl 770 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑝𝐴)
34 simprr 772 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → 𝑞𝐴)
351, 3, 4hlatjcl 39367 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ 𝐵)
3632, 33, 34, 35syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (𝑝 𝑞) ∈ 𝐵)
3736biantrurd 532 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ((𝑝 𝑞) ∈ 𝐵 ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
3831, 37bitr4id 290 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
39382rexbidva 3201 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
40 rexcom4 3265 . . . . . . 7 (∃𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4140rexbii 3077 . . . . . 6 (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
42 rexcom4 3265 . . . . . 6 (∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4341, 42bitri 275 . . . . 5 (∃𝑝𝐴𝑞𝐴𝑦𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4439, 43bitr3di 286 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
45 rexcom 3267 . . . . . . . . 9 (∃𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4645rexbii 3077 . . . . . . . 8 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
47 rexcom 3267 . . . . . . . 8 (∃𝑝𝐴𝑟𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
4846, 47bitri 275 . . . . . . 7 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
491, 3, 4, 5islln2 39512 . . . . . . . . . . 11 (𝐾 ∈ HL → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5049adantr 480 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑦 ∈ (LLines‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5150anbi1d 631 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
52 r19.42v 3170 . . . . . . . . . 10 (∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
53 r19.42v 3170 . . . . . . . . . . 11 (∃𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
5453rexbii 3077 . . . . . . . . . 10 (∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
55 an32 646 . . . . . . . . . 10 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))))
5652, 54, 553bitr4ri 304 . . . . . . . . 9 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑦 = (𝑝 𝑞))) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))))
5751, 56bitrdi 287 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5857rexbidv 3158 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ ∃𝑟𝐴𝑝𝐴𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞)))))
5948, 58bitr4id 290 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟)))))
60 r19.42v 3170 . . . . . 6 (∃𝑟𝐴 (𝑦 ∈ (LLines‘𝐾) ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟))))
6159, 60bitrdi 287 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ (𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
6261exbidv 1921 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑟 𝑦𝑋 = (𝑦 𝑟))) ∧ (𝑝𝑞𝑦 = (𝑝 𝑞))) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
6344, 62bitrd 279 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)) ↔ ∃𝑦(𝑦 ∈ (LLines‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)))))
648, 63bitr4id 290 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦 ∈ (LLines‘𝐾)∃𝑟𝐴𝑟 𝑦𝑋 = (𝑦 𝑟)) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
657, 64bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  Atomscatm 39263  HLchlt 39350  LLinesclln 39492  LPlanesclpl 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500
This theorem is referenced by:  islpln2  39537  lplni2  39538
  Copyright terms: Public domain W3C validator