Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol5 Structured version   Visualization version   GIF version

Theorem islvol5 39618
Description: The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
islvol5.b 𝐵 = (Base‘𝐾)
islvol5.l = (le‘𝐾)
islvol5.j = (join‘𝐾)
islvol5.a 𝐴 = (Atoms‘𝐾)
islvol5.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   𝐵,𝑝,𝑞,𝑟,𝑠   ,𝑝,𝑞,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠   ,𝑝,𝑞,𝑟,𝑠   𝑋,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   𝑉(𝑠,𝑟,𝑞,𝑝)

Proof of Theorem islvol5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 islvol5.b . . 3 𝐵 = (Base‘𝐾)
2 islvol5.l . . 3 = (le‘𝐾)
3 islvol5.j . . 3 = (join‘𝐾)
4 islvol5.a . . 3 𝐴 = (Atoms‘𝐾)
5 eqid 2731 . . 3 (LPlanes‘𝐾) = (LPlanes‘𝐾)
6 islvol5.v . . 3 𝑉 = (LVols‘𝐾)
71, 2, 3, 4, 5, 6islvol3 39615 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦 ∈ (LPlanes‘𝐾)∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠))))
8 df-rex 3057 . . 3 (∃𝑦 ∈ (LPlanes‘𝐾)∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)) ↔ ∃𝑦(𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠))))
9 r19.41v 3162 . . . . . . . . . . 11 (∃𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
10 df-3an 1088 . . . . . . . . . . . . 13 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))
1110anbi2i 623 . . . . . . . . . . . 12 ((∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
12 an13 647 . . . . . . . . . . . 12 ((∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))))
1311, 12bitri 275 . . . . . . . . . . 11 ((∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))))
149, 13bitri 275 . . . . . . . . . 10 (∃𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))))
1514exbii 1849 . . . . . . . . 9 (∃𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦(𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))))
16 ovex 7374 . . . . . . . . . 10 ((𝑝 𝑞) 𝑟) ∈ V
17 an12 645 . . . . . . . . . . . . 13 (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ (𝑦𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))))
18 eleq1 2819 . . . . . . . . . . . . . 14 (𝑦 = ((𝑝 𝑞) 𝑟) → (𝑦𝐵 ↔ ((𝑝 𝑞) 𝑟) ∈ 𝐵))
19 breq2 5090 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑝 𝑞) 𝑟) → (𝑠 𝑦𝑠 ((𝑝 𝑞) 𝑟)))
2019notbid 318 . . . . . . . . . . . . . . . . 17 (𝑦 = ((𝑝 𝑞) 𝑟) → (¬ 𝑠 𝑦 ↔ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
21 oveq1 7348 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑝 𝑞) 𝑟) → (𝑦 𝑠) = (((𝑝 𝑞) 𝑟) 𝑠))
2221eqeq2d 2742 . . . . . . . . . . . . . . . . 17 (𝑦 = ((𝑝 𝑞) 𝑟) → (𝑋 = (𝑦 𝑠) ↔ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))
2320, 22anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑦 = ((𝑝 𝑞) 𝑟) → ((¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)) ↔ (¬ 𝑠 ((𝑝 𝑞) 𝑟) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
2423anbi2d 630 . . . . . . . . . . . . . . 15 (𝑦 = ((𝑝 𝑞) 𝑟) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 ((𝑝 𝑞) 𝑟) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
25 anass 468 . . . . . . . . . . . . . . . 16 ((((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 ((𝑝 𝑞) 𝑟) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
26 df-3an 1088 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
2726bicomi 224 . . . . . . . . . . . . . . . . 17 (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
2827anbi1i 624 . . . . . . . . . . . . . . . 16 ((((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))
2925, 28bitr3i 277 . . . . . . . . . . . . . . 15 (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 ((𝑝 𝑞) 𝑟) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))
3024, 29bitrdi 287 . . . . . . . . . . . . . 14 (𝑦 = ((𝑝 𝑞) 𝑟) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
3118, 30anbi12d 632 . . . . . . . . . . . . 13 (𝑦 = ((𝑝 𝑞) 𝑟) → ((𝑦𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
3217, 31bitrid 283 . . . . . . . . . . . 12 (𝑦 = ((𝑝 𝑞) 𝑟) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
3332rexbidv 3156 . . . . . . . . . . 11 (𝑦 = ((𝑝 𝑞) 𝑟) → (∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ ∃𝑠𝐴 (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
34 r19.42v 3164 . . . . . . . . . . 11 (∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))))
35 r19.42v 3164 . . . . . . . . . . 11 (∃𝑠𝐴 (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
3633, 34, 353bitr3g 313 . . . . . . . . . 10 (𝑦 = ((𝑝 𝑞) 𝑟) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
3716, 36ceqsexv 3486 . . . . . . . . 9 (∃𝑦(𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
3815, 37bitri 275 . . . . . . . 8 (∃𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
39 hllat 39402 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4039ad3antrrr 730 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝐾 ∈ Lat)
41 simplll 774 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
42 simplrl 776 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝑝𝐴)
43 simplrr 777 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝑞𝐴)
441, 3, 4hlatjcl 39406 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ 𝐵)
4541, 42, 43, 44syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → (𝑝 𝑞) ∈ 𝐵)
461, 4atbase 39328 . . . . . . . . . . 11 (𝑟𝐴𝑟𝐵)
4746adantl 481 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝑟𝐵)
481, 3latjcl 18340 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ 𝐵𝑟𝐵) → ((𝑝 𝑞) 𝑟) ∈ 𝐵)
4940, 45, 47, 48syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → ((𝑝 𝑞) 𝑟) ∈ 𝐵)
5049biantrurd 532 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → (∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
5138, 50bitr4id 290 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → (∃𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
5251rexbidva 3154 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
53522rexbidva 3195 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
54 rexcom4 3259 . . . . . . . . 9 (∃𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
5554rexbii 3079 . . . . . . . 8 (∃𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑞𝐴𝑦𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
56 rexcom4 3259 . . . . . . . 8 (∃𝑞𝐴𝑦𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
5755, 56bitri 275 . . . . . . 7 (∃𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
5857rexbii 3079 . . . . . 6 (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
59 rexcom4 3259 . . . . . 6 (∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
6058, 59bitri 275 . . . . 5 (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
6153, 60bitr3di 286 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
62 rexcom 3261 . . . . . . . . . . 11 (∃𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
6362rexbii 3079 . . . . . . . . . 10 (∃𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑞𝐴𝑠𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
64 rexcom 3261 . . . . . . . . . 10 (∃𝑞𝐴𝑠𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
6563, 64bitri 275 . . . . . . . . 9 (∃𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
6665rexbii 3079 . . . . . . . 8 (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑝𝐴𝑠𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
67 rexcom 3261 . . . . . . . 8 (∃𝑝𝐴𝑠𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
6866, 67bitri 275 . . . . . . 7 (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
691, 2, 3, 4, 5islpln2 39575 . . . . . . . . . . 11 (𝐾 ∈ HL → (𝑦 ∈ (LPlanes‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
7069adantr 480 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑦 ∈ (LPlanes‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
7170anbi1d 631 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))))
72 r19.42v 3164 . . . . . . . . . 10 (∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
73 r19.42v 3164 . . . . . . . . . . . . 13 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
7473rexbii 3079 . . . . . . . . . . . 12 (∃𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
75 r19.42v 3164 . . . . . . . . . . . 12 (∃𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
7674, 75bitri 275 . . . . . . . . . . 11 (∃𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
7776rexbii 3079 . . . . . . . . . 10 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
78 an32 646 . . . . . . . . . 10 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
7972, 77, 783bitr4ri 304 . . . . . . . . 9 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
8071, 79bitrdi 287 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
8180rexbidv 3156 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑠𝐴 (𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ∃𝑠𝐴𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
8268, 81bitr4id 290 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴 (𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))))
83 r19.42v 3164 . . . . . 6 (∃𝑠𝐴 (𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ (𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠))))
8482, 83bitrdi 287 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)))))
8584exbidv 1922 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦(𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)))))
8661, 85bitrd 279 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ∃𝑦(𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)))))
878, 86bitr4id 290 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦 ∈ (LPlanes‘𝐾)∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
887, 87bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  Latclat 18332  Atomscatm 39302  HLchlt 39389  LPlanesclpl 39531  LVolsclvol 39532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539
This theorem is referenced by:  islvol2  39619  lvoli2  39620
  Copyright terms: Public domain W3C validator