Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol5 Structured version   Visualization version   GIF version

Theorem islvol5 36595
Description: The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
islvol5.b 𝐵 = (Base‘𝐾)
islvol5.l = (le‘𝐾)
islvol5.j = (join‘𝐾)
islvol5.a 𝐴 = (Atoms‘𝐾)
islvol5.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   𝐵,𝑝,𝑞,𝑟,𝑠   ,𝑝,𝑞,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠   ,𝑝,𝑞,𝑟,𝑠   𝑋,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   𝑉(𝑠,𝑟,𝑞,𝑝)

Proof of Theorem islvol5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 islvol5.b . . 3 𝐵 = (Base‘𝐾)
2 islvol5.l . . 3 = (le‘𝐾)
3 islvol5.j . . 3 = (join‘𝐾)
4 islvol5.a . . 3 𝐴 = (Atoms‘𝐾)
5 eqid 2818 . . 3 (LPlanes‘𝐾) = (LPlanes‘𝐾)
6 islvol5.v . . 3 𝑉 = (LVols‘𝐾)
71, 2, 3, 4, 5, 6islvol3 36592 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦 ∈ (LPlanes‘𝐾)∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠))))
8 rexcom4 3246 . . . . . . . . 9 (∃𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
98rexbii 3244 . . . . . . . 8 (∃𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑞𝐴𝑦𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
10 rexcom4 3246 . . . . . . . 8 (∃𝑞𝐴𝑦𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
119, 10bitri 276 . . . . . . 7 (∃𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
1211rexbii 3244 . . . . . 6 (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
13 rexcom4 3246 . . . . . 6 (∃𝑝𝐴𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
1412, 13bitri 276 . . . . 5 (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
15 hllat 36379 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1615ad3antrrr 726 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝐾 ∈ Lat)
17 simplll 771 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
18 simplrl 773 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝑝𝐴)
19 simplrr 774 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝑞𝐴)
201, 3, 4hlatjcl 36383 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ 𝐵)
2117, 18, 19, 20syl3anc 1363 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → (𝑝 𝑞) ∈ 𝐵)
221, 4atbase 36305 . . . . . . . . . . 11 (𝑟𝐴𝑟𝐵)
2322adantl 482 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → 𝑟𝐵)
241, 3latjcl 17649 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ 𝐵𝑟𝐵) → ((𝑝 𝑞) 𝑟) ∈ 𝐵)
2516, 21, 23, 24syl3anc 1363 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → ((𝑝 𝑞) 𝑟) ∈ 𝐵)
2625biantrurd 533 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → (∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
27 r19.41v 3344 . . . . . . . . . . 11 (∃𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
28 df-3an 1081 . . . . . . . . . . . . 13 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))
2928anbi2i 622 . . . . . . . . . . . 12 ((∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
30 an13 643 . . . . . . . . . . . 12 ((∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))))
3129, 30bitri 276 . . . . . . . . . . 11 ((∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))))
3227, 31bitri 276 . . . . . . . . . 10 (∃𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))))
3332exbii 1839 . . . . . . . . 9 (∃𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦(𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))))
34 ovex 7178 . . . . . . . . . 10 ((𝑝 𝑞) 𝑟) ∈ V
35 an12 641 . . . . . . . . . . . . 13 (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ (𝑦𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))))
36 eleq1 2897 . . . . . . . . . . . . . 14 (𝑦 = ((𝑝 𝑞) 𝑟) → (𝑦𝐵 ↔ ((𝑝 𝑞) 𝑟) ∈ 𝐵))
37 breq2 5061 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑝 𝑞) 𝑟) → (𝑠 𝑦𝑠 ((𝑝 𝑞) 𝑟)))
3837notbid 319 . . . . . . . . . . . . . . . . 17 (𝑦 = ((𝑝 𝑞) 𝑟) → (¬ 𝑠 𝑦 ↔ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
39 oveq1 7152 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑝 𝑞) 𝑟) → (𝑦 𝑠) = (((𝑝 𝑞) 𝑟) 𝑠))
4039eqeq2d 2829 . . . . . . . . . . . . . . . . 17 (𝑦 = ((𝑝 𝑞) 𝑟) → (𝑋 = (𝑦 𝑠) ↔ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))
4138, 40anbi12d 630 . . . . . . . . . . . . . . . 16 (𝑦 = ((𝑝 𝑞) 𝑟) → ((¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)) ↔ (¬ 𝑠 ((𝑝 𝑞) 𝑟) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
4241anbi2d 628 . . . . . . . . . . . . . . 15 (𝑦 = ((𝑝 𝑞) 𝑟) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 ((𝑝 𝑞) 𝑟) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
43 anass 469 . . . . . . . . . . . . . . . 16 ((((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 ((𝑝 𝑞) 𝑟) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
44 df-3an 1081 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
4544bicomi 225 . . . . . . . . . . . . . . . . 17 (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
4645anbi1i 623 . . . . . . . . . . . . . . . 16 ((((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))
4743, 46bitr3i 278 . . . . . . . . . . . . . . 15 (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 ((𝑝 𝑞) 𝑟) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))
4842, 47syl6bb 288 . . . . . . . . . . . . . 14 (𝑦 = ((𝑝 𝑞) 𝑟) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
4936, 48anbi12d 630 . . . . . . . . . . . . 13 (𝑦 = ((𝑝 𝑞) 𝑟) → ((𝑦𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
5035, 49syl5bb 284 . . . . . . . . . . . 12 (𝑦 = ((𝑝 𝑞) 𝑟) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
5150rexbidv 3294 . . . . . . . . . . 11 (𝑦 = ((𝑝 𝑞) 𝑟) → (∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ ∃𝑠𝐴 (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
52 r19.42v 3347 . . . . . . . . . . 11 (∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))))
53 r19.42v 3347 . . . . . . . . . . 11 (∃𝑠𝐴 (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
5451, 52, 533bitr3g 314 . . . . . . . . . 10 (𝑦 = ((𝑝 𝑞) 𝑟) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
5534, 54ceqsexv 3539 . . . . . . . . 9 (∃𝑦(𝑦 = ((𝑝 𝑞) 𝑟) ∧ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ∃𝑠𝐴 (𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
5633, 55bitri 276 . . . . . . . 8 (∃𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (((𝑝 𝑞) 𝑟) ∈ 𝐵 ∧ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
5726, 56syl6rbbr 291 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) ∧ 𝑟𝐴) → (∃𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
5857rexbidva 3293 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
59582rexbidva 3296 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
6014, 59syl5rbbr 287 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
611, 2, 3, 4, 5islpln2 36552 . . . . . . . . . . 11 (𝐾 ∈ HL → (𝑦 ∈ (LPlanes‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
6261adantr 481 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑦 ∈ (LPlanes‘𝐾) ↔ (𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
6362anbi1d 629 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))))
64 r19.42v 3347 . . . . . . . . . 10 (∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
65 r19.42v 3347 . . . . . . . . . . . . 13 (∃𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
6665rexbii 3244 . . . . . . . . . . . 12 (∃𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
67 r19.42v 3347 . . . . . . . . . . . 12 (∃𝑞𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
6866, 67bitri 276 . . . . . . . . . . 11 (∃𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
6968rexbii 3244 . . . . . . . . . 10 (∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑝𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
70 an32 642 . . . . . . . . . 10 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
7164, 69, 703bitr4ri 305 . . . . . . . . 9 (((𝑦𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
7263, 71syl6bb 288 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
7372rexbidv 3294 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑠𝐴 (𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ ∃𝑠𝐴𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟)))))
74 rexcom 3352 . . . . . . . . . . 11 (∃𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
7574rexbii 3244 . . . . . . . . . 10 (∃𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑞𝐴𝑠𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
76 rexcom 3352 . . . . . . . . . 10 (∃𝑞𝐴𝑠𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
7775, 76bitri 276 . . . . . . . . 9 (∃𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
7877rexbii 3244 . . . . . . . 8 (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑝𝐴𝑠𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
79 rexcom 3352 . . . . . . . 8 (∃𝑝𝐴𝑠𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
8078, 79bitri 276 . . . . . . 7 (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴𝑝𝐴𝑞𝐴𝑟𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))))
8173, 80syl6rbbr 291 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑠𝐴 (𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠)))))
82 r19.42v 3347 . . . . . 6 (∃𝑠𝐴 (𝑦 ∈ (LPlanes‘𝐾) ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ↔ (𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠))))
8381, 82syl6bb 288 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ (𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)))))
8483exbidv 1913 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑦𝐵 ∧ (¬ 𝑠 𝑦𝑋 = (𝑦 𝑠))) ∧ (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑦 = ((𝑝 𝑞) 𝑟))) ↔ ∃𝑦(𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)))))
8560, 84bitrd 280 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ∃𝑦(𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)))))
86 df-rex 3141 . . 3 (∃𝑦 ∈ (LPlanes‘𝐾)∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)) ↔ ∃𝑦(𝑦 ∈ (LPlanes‘𝐾) ∧ ∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠))))
8785, 86syl6rbbr 291 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦 ∈ (LPlanes‘𝐾)∃𝑠𝐴𝑠 𝑦𝑋 = (𝑦 𝑠)) ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
887, 87bitrd 280 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  wne 3013  wrex 3136   class class class wbr 5057  cfv 6348  (class class class)co 7145  Basecbs 16471  lecple 16560  joincjn 17542  Latclat 17643  Atomscatm 36279  HLchlt 36366  LPlanesclpl 36508  LVolsclvol 36509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-lat 17644  df-clat 17706  df-oposet 36192  df-ol 36194  df-oml 36195  df-covers 36282  df-ats 36283  df-atl 36314  df-cvlat 36338  df-hlat 36367  df-llines 36514  df-lplanes 36515  df-lvols 36516
This theorem is referenced by:  islvol2  36596  lvoli2  36597
  Copyright terms: Public domain W3C validator