MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsnxp Structured version   Visualization version   GIF version

Theorem elsnxp 6322
Description: Membership in a Cartesian product with a singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
elsnxp (𝑋𝑉 → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉   𝑦,𝑋   𝑦,𝑍

Proof of Theorem elsnxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elxp 5723 . . 3 (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑥𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)))
2 df-rex 3077 . . . . . 6 (∃𝑦𝐴 (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩)))
3 an13 646 . . . . . . 7 ((𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)) ↔ (𝑦𝐴 ∧ (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩)))
43exbii 1846 . . . . . 6 (∃𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩)))
52, 4bitr4i 278 . . . . 5 (∃𝑦𝐴 (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)))
6 elsni 4665 . . . . . . . . 9 (𝑥 ∈ {𝑋} → 𝑥 = 𝑋)
76opeq1d 4903 . . . . . . . 8 (𝑥 ∈ {𝑋} → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑦⟩)
87eqeq2d 2751 . . . . . . 7 (𝑥 ∈ {𝑋} → (𝑍 = ⟨𝑥, 𝑦⟩ ↔ 𝑍 = ⟨𝑋, 𝑦⟩))
98biimpa 476 . . . . . 6 ((𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩) → 𝑍 = ⟨𝑋, 𝑦⟩)
109reximi 3090 . . . . 5 (∃𝑦𝐴 (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩) → ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩)
115, 10sylbir 235 . . . 4 (∃𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)) → ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩)
1211exlimiv 1929 . . 3 (∃𝑥𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)) → ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩)
131, 12sylbi 217 . 2 (𝑍 ∈ ({𝑋} × 𝐴) → ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩)
14 snidg 4682 . . . . 5 (𝑋𝑉𝑋 ∈ {𝑋})
15 opelxpi 5737 . . . . 5 ((𝑋 ∈ {𝑋} ∧ 𝑦𝐴) → ⟨𝑋, 𝑦⟩ ∈ ({𝑋} × 𝐴))
1614, 15sylan 579 . . . 4 ((𝑋𝑉𝑦𝐴) → ⟨𝑋, 𝑦⟩ ∈ ({𝑋} × 𝐴))
17 eleq1 2832 . . . 4 (𝑍 = ⟨𝑋, 𝑦⟩ → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ⟨𝑋, 𝑦⟩ ∈ ({𝑋} × 𝐴)))
1816, 17syl5ibrcom 247 . . 3 ((𝑋𝑉𝑦𝐴) → (𝑍 = ⟨𝑋, 𝑦⟩ → 𝑍 ∈ ({𝑋} × 𝐴)))
1918rexlimdva 3161 . 2 (𝑋𝑉 → (∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩ → 𝑍 ∈ ({𝑋} × 𝐴)))
2013, 19impbid2 226 1 (𝑋𝑉 → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076  {csn 4648  cop 4654   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706
This theorem is referenced by:  esum2dlem  34056  esum2d  34057  projf1o  45104  sge0xp  46350
  Copyright terms: Public domain W3C validator