MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsnxp Structured version   Visualization version   GIF version

Theorem elsnxp 6238
Description: Membership in a Cartesian product with a singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
elsnxp (𝑋𝑉 → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉   𝑦,𝑋   𝑦,𝑍

Proof of Theorem elsnxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elxp 5639 . . 3 (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑥𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)))
2 df-rex 3057 . . . . . 6 (∃𝑦𝐴 (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩)))
3 an13 647 . . . . . . 7 ((𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)) ↔ (𝑦𝐴 ∧ (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩)))
43exbii 1849 . . . . . 6 (∃𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩)))
52, 4bitr4i 278 . . . . 5 (∃𝑦𝐴 (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩) ↔ ∃𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)))
6 elsni 4593 . . . . . . . . 9 (𝑥 ∈ {𝑋} → 𝑥 = 𝑋)
76opeq1d 4831 . . . . . . . 8 (𝑥 ∈ {𝑋} → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑦⟩)
87eqeq2d 2742 . . . . . . 7 (𝑥 ∈ {𝑋} → (𝑍 = ⟨𝑥, 𝑦⟩ ↔ 𝑍 = ⟨𝑋, 𝑦⟩))
98biimpa 476 . . . . . 6 ((𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩) → 𝑍 = ⟨𝑋, 𝑦⟩)
109reximi 3070 . . . . 5 (∃𝑦𝐴 (𝑥 ∈ {𝑋} ∧ 𝑍 = ⟨𝑥, 𝑦⟩) → ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩)
115, 10sylbir 235 . . . 4 (∃𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)) → ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩)
1211exlimiv 1931 . . 3 (∃𝑥𝑦(𝑍 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ {𝑋} ∧ 𝑦𝐴)) → ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩)
131, 12sylbi 217 . 2 (𝑍 ∈ ({𝑋} × 𝐴) → ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩)
14 snidg 4613 . . . . 5 (𝑋𝑉𝑋 ∈ {𝑋})
15 opelxpi 5653 . . . . 5 ((𝑋 ∈ {𝑋} ∧ 𝑦𝐴) → ⟨𝑋, 𝑦⟩ ∈ ({𝑋} × 𝐴))
1614, 15sylan 580 . . . 4 ((𝑋𝑉𝑦𝐴) → ⟨𝑋, 𝑦⟩ ∈ ({𝑋} × 𝐴))
17 eleq1 2819 . . . 4 (𝑍 = ⟨𝑋, 𝑦⟩ → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ⟨𝑋, 𝑦⟩ ∈ ({𝑋} × 𝐴)))
1816, 17syl5ibrcom 247 . . 3 ((𝑋𝑉𝑦𝐴) → (𝑍 = ⟨𝑋, 𝑦⟩ → 𝑍 ∈ ({𝑋} × 𝐴)))
1918rexlimdva 3133 . 2 (𝑋𝑉 → (∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩ → 𝑍 ∈ ({𝑋} × 𝐴)))
2013, 19impbid2 226 1 (𝑋𝑉 → (𝑍 ∈ ({𝑋} × 𝐴) ↔ ∃𝑦𝐴 𝑍 = ⟨𝑋, 𝑦⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056  {csn 4576  cop 4582   × cxp 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-opab 5154  df-xp 5622
This theorem is referenced by:  esum2dlem  34100  esum2d  34101  projf1o  45233  sge0xp  46466
  Copyright terms: Public domain W3C validator