Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfiota3 Structured version   Visualization version   GIF version

Theorem dfiota3 34152
Description: A definition of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dfiota3 (℩𝑥𝜑) = ({{𝑥𝜑}} ∩ Singletons )

Proof of Theorem dfiota3
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iota 6376 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 abeq1 2872 . . . . 5 ({𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})} ↔ ∀𝑦({𝑥𝜑} = {𝑦} ↔ 𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}))
3 exdistr 1959 . . . . . 6 (∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})) ↔ ∃𝑧(𝑦𝑧 ∧ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
4 vex 3426 . . . . . . . . 9 𝑦 ∈ V
5 sneq 4568 . . . . . . . . . 10 (𝑤 = 𝑦 → {𝑤} = {𝑦})
65eqeq2d 2749 . . . . . . . . 9 (𝑤 = 𝑦 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑦}))
74, 6ceqsexv 3469 . . . . . . . 8 (∃𝑤(𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ {𝑥𝜑} = {𝑦})
8 snex 5349 . . . . . . . . . . 11 {𝑤} ∈ V
9 eqeq1 2742 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → (𝑧 = {𝑥𝜑} ↔ {𝑤} = {𝑥𝜑}))
10 eleq2 2827 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → (𝑦𝑧𝑦 ∈ {𝑤}))
119, 10anbi12d 630 . . . . . . . . . . . 12 (𝑧 = {𝑤} → ((𝑧 = {𝑥𝜑} ∧ 𝑦𝑧) ↔ ({𝑤} = {𝑥𝜑} ∧ 𝑦 ∈ {𝑤})))
12 eqcom 2745 . . . . . . . . . . . . 13 ({𝑤} = {𝑥𝜑} ↔ {𝑥𝜑} = {𝑤})
13 velsn 4574 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤)
14 equcom 2022 . . . . . . . . . . . . . 14 (𝑦 = 𝑤𝑤 = 𝑦)
1513, 14bitri 274 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑤} ↔ 𝑤 = 𝑦)
1612, 15anbi12ci 627 . . . . . . . . . . . 12 (({𝑤} = {𝑥𝜑} ∧ 𝑦 ∈ {𝑤}) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}))
1711, 16bitrdi 286 . . . . . . . . . . 11 (𝑧 = {𝑤} → ((𝑧 = {𝑥𝜑} ∧ 𝑦𝑧) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤})))
188, 17ceqsexv 3469 . . . . . . . . . 10 (∃𝑧(𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}))
19 an13 643 . . . . . . . . . . 11 ((𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ (𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2019exbii 1851 . . . . . . . . . 10 (∃𝑧(𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ ∃𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2118, 20bitr3i 276 . . . . . . . . 9 ((𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ ∃𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2221exbii 1851 . . . . . . . 8 (∃𝑤(𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ ∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
237, 22bitr3i 276 . . . . . . 7 ({𝑥𝜑} = {𝑦} ↔ ∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
24 excom 2164 . . . . . . 7 (∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})) ↔ ∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2523, 24bitri 274 . . . . . 6 ({𝑥𝜑} = {𝑦} ↔ ∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
26 eluniab 4851 . . . . . 6 (𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})} ↔ ∃𝑧(𝑦𝑧 ∧ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
273, 25, 263bitr4i 302 . . . . 5 ({𝑥𝜑} = {𝑦} ↔ 𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})})
282, 27mpgbir 1803 . . . 4 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
29 df-sn 4559 . . . . . . 7 {{𝑥𝜑}} = {𝑧𝑧 = {𝑥𝜑}}
30 dfsingles2 34150 . . . . . . 7 Singletons = {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}
3129, 30ineq12i 4141 . . . . . 6 ({{𝑥𝜑}} ∩ Singletons ) = ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}})
32 inab 4230 . . . . . . 7 ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}) = {𝑧 ∣ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤})}
33 19.42v 1958 . . . . . . . . 9 (∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤}) ↔ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤}))
3433bicomi 223 . . . . . . . 8 ((𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤}) ↔ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤}))
3534abbii 2809 . . . . . . 7 {𝑧 ∣ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤})} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3632, 35eqtri 2766 . . . . . 6 ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3731, 36eqtri 2766 . . . . 5 ({{𝑥𝜑}} ∩ Singletons ) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3837unieqi 4849 . . . 4 ({{𝑥𝜑}} ∩ Singletons ) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3928, 38eqtr4i 2769 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = ({{𝑥𝜑}} ∩ Singletons )
4039unieqi 4849 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = ({{𝑥𝜑}} ∩ Singletons )
411, 40eqtri 2766 1 (℩𝑥𝜑) = ({{𝑥𝜑}} ∩ Singletons )
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  cin 3882  {csn 4558   cuni 4836  cio 6374   Singletons csingles 34068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-symdif 4173  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-singleton 34091  df-singles 34092
This theorem is referenced by:  dffv5  34153
  Copyright terms: Public domain W3C validator