Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfiota3 Structured version   Visualization version   GIF version

Theorem dfiota3 33386
Description: A definition of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dfiota3 (℩𝑥𝜑) = ({{𝑥𝜑}} ∩ Singletons )

Proof of Theorem dfiota3
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iota 6316 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 abeq1 2948 . . . . 5 ({𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})} ↔ ∀𝑦({𝑥𝜑} = {𝑦} ↔ 𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}))
3 exdistr 1955 . . . . . 6 (∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})) ↔ ∃𝑧(𝑦𝑧 ∧ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
4 vex 3499 . . . . . . . . 9 𝑦 ∈ V
5 sneq 4579 . . . . . . . . . 10 (𝑤 = 𝑦 → {𝑤} = {𝑦})
65eqeq2d 2834 . . . . . . . . 9 (𝑤 = 𝑦 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑦}))
74, 6ceqsexv 3543 . . . . . . . 8 (∃𝑤(𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ {𝑥𝜑} = {𝑦})
8 snex 5334 . . . . . . . . . . 11 {𝑤} ∈ V
9 eqeq1 2827 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → (𝑧 = {𝑥𝜑} ↔ {𝑤} = {𝑥𝜑}))
10 eleq2 2903 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → (𝑦𝑧𝑦 ∈ {𝑤}))
119, 10anbi12d 632 . . . . . . . . . . . 12 (𝑧 = {𝑤} → ((𝑧 = {𝑥𝜑} ∧ 𝑦𝑧) ↔ ({𝑤} = {𝑥𝜑} ∧ 𝑦 ∈ {𝑤})))
12 eqcom 2830 . . . . . . . . . . . . 13 ({𝑤} = {𝑥𝜑} ↔ {𝑥𝜑} = {𝑤})
13 velsn 4585 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤)
14 equcom 2025 . . . . . . . . . . . . . 14 (𝑦 = 𝑤𝑤 = 𝑦)
1513, 14bitri 277 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑤} ↔ 𝑤 = 𝑦)
1612, 15anbi12ci 629 . . . . . . . . . . . 12 (({𝑤} = {𝑥𝜑} ∧ 𝑦 ∈ {𝑤}) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}))
1711, 16syl6bb 289 . . . . . . . . . . 11 (𝑧 = {𝑤} → ((𝑧 = {𝑥𝜑} ∧ 𝑦𝑧) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤})))
188, 17ceqsexv 3543 . . . . . . . . . 10 (∃𝑧(𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}))
19 an13 645 . . . . . . . . . . 11 ((𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ (𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2019exbii 1848 . . . . . . . . . 10 (∃𝑧(𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ ∃𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2118, 20bitr3i 279 . . . . . . . . 9 ((𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ ∃𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2221exbii 1848 . . . . . . . 8 (∃𝑤(𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ ∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
237, 22bitr3i 279 . . . . . . 7 ({𝑥𝜑} = {𝑦} ↔ ∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
24 excom 2169 . . . . . . 7 (∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})) ↔ ∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2523, 24bitri 277 . . . . . 6 ({𝑥𝜑} = {𝑦} ↔ ∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
26 eluniab 4855 . . . . . 6 (𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})} ↔ ∃𝑧(𝑦𝑧 ∧ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
273, 25, 263bitr4i 305 . . . . 5 ({𝑥𝜑} = {𝑦} ↔ 𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})})
282, 27mpgbir 1800 . . . 4 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
29 df-sn 4570 . . . . . . 7 {{𝑥𝜑}} = {𝑧𝑧 = {𝑥𝜑}}
30 dfsingles2 33384 . . . . . . 7 Singletons = {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}
3129, 30ineq12i 4189 . . . . . 6 ({{𝑥𝜑}} ∩ Singletons ) = ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}})
32 inab 4273 . . . . . . 7 ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}) = {𝑧 ∣ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤})}
33 19.42v 1954 . . . . . . . . 9 (∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤}) ↔ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤}))
3433bicomi 226 . . . . . . . 8 ((𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤}) ↔ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤}))
3534abbii 2888 . . . . . . 7 {𝑧 ∣ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤})} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3632, 35eqtri 2846 . . . . . 6 ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3731, 36eqtri 2846 . . . . 5 ({{𝑥𝜑}} ∩ Singletons ) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3837unieqi 4853 . . . 4 ({{𝑥𝜑}} ∩ Singletons ) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3928, 38eqtr4i 2849 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = ({{𝑥𝜑}} ∩ Singletons )
4039unieqi 4853 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = ({{𝑥𝜑}} ∩ Singletons )
411, 40eqtri 2846 1 (℩𝑥𝜑) = ({{𝑥𝜑}} ∩ Singletons )
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  {cab 2801  cin 3937  {csn 4569   cuni 4840  cio 6314   Singletons csingles 33302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-symdif 4221  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-eprel 5467  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365  df-1st 7691  df-2nd 7692  df-txp 33317  df-singleton 33325  df-singles 33326
This theorem is referenced by:  dffv5  33387
  Copyright terms: Public domain W3C validator