Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfiota3 Structured version   Visualization version   GIF version

Theorem dfiota3 33497
Description: A definition of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dfiota3 (℩𝑥𝜑) = ({{𝑥𝜑}} ∩ Singletons )

Proof of Theorem dfiota3
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iota 6283 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 abeq1 2923 . . . . 5 ({𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})} ↔ ∀𝑦({𝑥𝜑} = {𝑦} ↔ 𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}))
3 exdistr 1955 . . . . . 6 (∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})) ↔ ∃𝑧(𝑦𝑧 ∧ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
4 vex 3444 . . . . . . . . 9 𝑦 ∈ V
5 sneq 4535 . . . . . . . . . 10 (𝑤 = 𝑦 → {𝑤} = {𝑦})
65eqeq2d 2809 . . . . . . . . 9 (𝑤 = 𝑦 → ({𝑥𝜑} = {𝑤} ↔ {𝑥𝜑} = {𝑦}))
74, 6ceqsexv 3489 . . . . . . . 8 (∃𝑤(𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ {𝑥𝜑} = {𝑦})
8 snex 5297 . . . . . . . . . . 11 {𝑤} ∈ V
9 eqeq1 2802 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → (𝑧 = {𝑥𝜑} ↔ {𝑤} = {𝑥𝜑}))
10 eleq2 2878 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → (𝑦𝑧𝑦 ∈ {𝑤}))
119, 10anbi12d 633 . . . . . . . . . . . 12 (𝑧 = {𝑤} → ((𝑧 = {𝑥𝜑} ∧ 𝑦𝑧) ↔ ({𝑤} = {𝑥𝜑} ∧ 𝑦 ∈ {𝑤})))
12 eqcom 2805 . . . . . . . . . . . . 13 ({𝑤} = {𝑥𝜑} ↔ {𝑥𝜑} = {𝑤})
13 velsn 4541 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑤} ↔ 𝑦 = 𝑤)
14 equcom 2025 . . . . . . . . . . . . . 14 (𝑦 = 𝑤𝑤 = 𝑦)
1513, 14bitri 278 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑤} ↔ 𝑤 = 𝑦)
1612, 15anbi12ci 630 . . . . . . . . . . . 12 (({𝑤} = {𝑥𝜑} ∧ 𝑦 ∈ {𝑤}) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}))
1711, 16syl6bb 290 . . . . . . . . . . 11 (𝑧 = {𝑤} → ((𝑧 = {𝑥𝜑} ∧ 𝑦𝑧) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤})))
188, 17ceqsexv 3489 . . . . . . . . . 10 (∃𝑧(𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ (𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}))
19 an13 646 . . . . . . . . . . 11 ((𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ (𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2019exbii 1849 . . . . . . . . . 10 (∃𝑧(𝑧 = {𝑤} ∧ (𝑧 = {𝑥𝜑} ∧ 𝑦𝑧)) ↔ ∃𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2118, 20bitr3i 280 . . . . . . . . 9 ((𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ ∃𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2221exbii 1849 . . . . . . . 8 (∃𝑤(𝑤 = 𝑦 ∧ {𝑥𝜑} = {𝑤}) ↔ ∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
237, 22bitr3i 280 . . . . . . 7 ({𝑥𝜑} = {𝑦} ↔ ∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
24 excom 2166 . . . . . . 7 (∃𝑤𝑧(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})) ↔ ∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
2523, 24bitri 278 . . . . . 6 ({𝑥𝜑} = {𝑦} ↔ ∃𝑧𝑤(𝑦𝑧 ∧ (𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
26 eluniab 4815 . . . . . 6 (𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})} ↔ ∃𝑧(𝑦𝑧 ∧ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})))
273, 25, 263bitr4i 306 . . . . 5 ({𝑥𝜑} = {𝑦} ↔ 𝑦 {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})})
282, 27mpgbir 1801 . . . 4 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
29 df-sn 4526 . . . . . . 7 {{𝑥𝜑}} = {𝑧𝑧 = {𝑥𝜑}}
30 dfsingles2 33495 . . . . . . 7 Singletons = {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}
3129, 30ineq12i 4137 . . . . . 6 ({{𝑥𝜑}} ∩ Singletons ) = ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}})
32 inab 4223 . . . . . . 7 ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}) = {𝑧 ∣ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤})}
33 19.42v 1954 . . . . . . . . 9 (∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤}) ↔ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤}))
3433bicomi 227 . . . . . . . 8 ((𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤}) ↔ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤}))
3534abbii 2863 . . . . . . 7 {𝑧 ∣ (𝑧 = {𝑥𝜑} ∧ ∃𝑤 𝑧 = {𝑤})} = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3632, 35eqtri 2821 . . . . . 6 ({𝑧𝑧 = {𝑥𝜑}} ∩ {𝑧 ∣ ∃𝑤 𝑧 = {𝑤}}) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3731, 36eqtri 2821 . . . . 5 ({{𝑥𝜑}} ∩ Singletons ) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3837unieqi 4813 . . . 4 ({{𝑥𝜑}} ∩ Singletons ) = {𝑧 ∣ ∃𝑤(𝑧 = {𝑥𝜑} ∧ 𝑧 = {𝑤})}
3928, 38eqtr4i 2824 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = ({{𝑥𝜑}} ∩ Singletons )
4039unieqi 4813 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = ({{𝑥𝜑}} ∩ Singletons )
411, 40eqtri 2821 1 (℩𝑥𝜑) = ({{𝑥𝜑}} ∩ Singletons )
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  {cab 2776  cin 3880  {csn 4525   cuni 4800  cio 6281   Singletons csingles 33413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-symdif 4169  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-eprel 5430  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-1st 7671  df-2nd 7672  df-txp 33428  df-singleton 33436  df-singles 33437
This theorem is referenced by:  dffv5  33498
  Copyright terms: Public domain W3C validator