Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexp0 Structured version   Visualization version   GIF version

Theorem iunrelexp0 43664
Description: Simplification of zeroth power of indexed union of powers of relations. (Contributed by RP, 19-Jun-2020.)
Assertion
Ref Expression
iunrelexp0 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ( 𝑥𝑍 (𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑉   𝑥,𝑍

Proof of Theorem iunrelexp0
StepHypRef Expression
1 df-pr 4651 . . . . . . 7 {0, 1} = ({0} ∪ {1})
21ineq1i 4237 . . . . . 6 ({0, 1} ∩ 𝑍) = (({0} ∪ {1}) ∩ 𝑍)
3 indir 4305 . . . . . 6 (({0} ∪ {1}) ∩ 𝑍) = (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))
42, 3eqtr2i 2769 . . . . 5 (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) = ({0, 1} ∩ 𝑍)
54uneq1i 4187 . . . 4 ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) = (({0, 1} ∩ 𝑍) ∪ 𝑍)
6 inss2 4259 . . . . 5 ({0, 1} ∩ 𝑍) ⊆ 𝑍
7 ssequn1 4209 . . . . 5 (({0, 1} ∩ 𝑍) ⊆ 𝑍 ↔ (({0, 1} ∩ 𝑍) ∪ 𝑍) = 𝑍)
86, 7mpbi 230 . . . 4 (({0, 1} ∩ 𝑍) ∪ 𝑍) = 𝑍
95, 8eqtr2i 2769 . . 3 𝑍 = ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)
10 iuneq1 5031 . . . 4 (𝑍 = ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) → 𝑥𝑍 (𝑅𝑟𝑥) = 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥))
1110oveq1d 7463 . . 3 (𝑍 = ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) → ( 𝑥𝑍 (𝑅𝑟𝑥)↑𝑟0) = ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0))
129, 11ax-mp 5 . 2 ( 𝑥𝑍 (𝑅𝑟𝑥)↑𝑟0) = ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0)
13 dmiun 5938 . . . . . . 7 dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) = 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)dom (𝑅𝑟𝑥)
14 iunxun 5117 . . . . . . 7 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)dom (𝑅𝑟𝑥) = ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥))
15 iunxun 5117 . . . . . . . . . 10 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) = ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥))
1615equncomi 4183 . . . . . . . . 9 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) = ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))
1716uneq1i 4187 . . . . . . . 8 ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥)) = (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥))
1817equncomi 4183 . . . . . . 7 ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥)) = ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)))
1913, 14, 183eqtri 2772 . . . . . 6 dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) = ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)))
20 rniun 6179 . . . . . . 7 ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) = 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)ran (𝑅𝑟𝑥)
21 iunxun 5117 . . . . . . 7 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)ran (𝑅𝑟𝑥) = ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))ran (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))
22 iunxun 5117 . . . . . . . 8 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))ran (𝑅𝑟𝑥) = ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))
2322uneq1i 4187 . . . . . . 7 ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))ran (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)) = (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))
2420, 21, 233eqtri 2772 . . . . . 6 ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) = (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))
2519, 24uneq12i 4189 . . . . 5 (dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = (( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
26 uncom 4181 . . . . . . 7 ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥))
2726uneq1i 4187 . . . . . 6 (( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥)) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
28 un4 4198 . . . . . 6 ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥)) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
2927, 28eqtri 2768 . . . . 5 (( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
30 uncom 4181 . . . . . . . 8 ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) = ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥))
3130uneq1i 4187 . . . . . . 7 (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)))
32 un4 4198 . . . . . . 7 (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)))
3331, 32eqtri 2768 . . . . . 6 (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)))
3433uneq1i 4187 . . . . 5 ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
3525, 29, 343eqtri 2772 . . . 4 (dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = ((( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
36 df-ne 2947 . . . . . . . . . 10 (({0, 1} ∩ 𝑍) ≠ ∅ ↔ ¬ ({0, 1} ∩ 𝑍) = ∅)
37 incom 4230 . . . . . . . . . . . . . . 15 ({0, 1} ∩ 𝑍) = (𝑍 ∩ {0, 1})
381ineq2i 4238 . . . . . . . . . . . . . . 15 (𝑍 ∩ {0, 1}) = (𝑍 ∩ ({0} ∪ {1}))
39 indi 4303 . . . . . . . . . . . . . . 15 (𝑍 ∩ ({0} ∪ {1})) = ((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1}))
4037, 38, 393eqtri 2772 . . . . . . . . . . . . . 14 ({0, 1} ∩ 𝑍) = ((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1}))
4140eqeq1i 2745 . . . . . . . . . . . . 13 (({0, 1} ∩ 𝑍) = ∅ ↔ ((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1})) = ∅)
42 un00 4468 . . . . . . . . . . . . 13 (((𝑍 ∩ {0}) = ∅ ∧ (𝑍 ∩ {1}) = ∅) ↔ ((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1})) = ∅)
43 anor 983 . . . . . . . . . . . . 13 (((𝑍 ∩ {0}) = ∅ ∧ (𝑍 ∩ {1}) = ∅) ↔ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅))
4441, 42, 433bitr2i 299 . . . . . . . . . . . 12 (({0, 1} ∩ 𝑍) = ∅ ↔ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅))
4544notbii 320 . . . . . . . . . . 11 (¬ ({0, 1} ∩ 𝑍) = ∅ ↔ ¬ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅))
46 notnotb 315 . . . . . . . . . . 11 ((¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅) ↔ ¬ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅))
47 disjsn 4736 . . . . . . . . . . . . . 14 ((𝑍 ∩ {0}) = ∅ ↔ ¬ 0 ∈ 𝑍)
4847notbii 320 . . . . . . . . . . . . 13 (¬ (𝑍 ∩ {0}) = ∅ ↔ ¬ ¬ 0 ∈ 𝑍)
49 notnotb 315 . . . . . . . . . . . . 13 (0 ∈ 𝑍 ↔ ¬ ¬ 0 ∈ 𝑍)
5048, 49bitr4i 278 . . . . . . . . . . . 12 (¬ (𝑍 ∩ {0}) = ∅ ↔ 0 ∈ 𝑍)
51 disjsn 4736 . . . . . . . . . . . . . 14 ((𝑍 ∩ {1}) = ∅ ↔ ¬ 1 ∈ 𝑍)
5251notbii 320 . . . . . . . . . . . . 13 (¬ (𝑍 ∩ {1}) = ∅ ↔ ¬ ¬ 1 ∈ 𝑍)
53 notnotb 315 . . . . . . . . . . . . 13 (1 ∈ 𝑍 ↔ ¬ ¬ 1 ∈ 𝑍)
5452, 53bitr4i 278 . . . . . . . . . . . 12 (¬ (𝑍 ∩ {1}) = ∅ ↔ 1 ∈ 𝑍)
5550, 54orbi12i 913 . . . . . . . . . . 11 ((¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅) ↔ (0 ∈ 𝑍 ∨ 1 ∈ 𝑍))
5645, 46, 553bitr2i 299 . . . . . . . . . 10 (¬ ({0, 1} ∩ 𝑍) = ∅ ↔ (0 ∈ 𝑍 ∨ 1 ∈ 𝑍))
5736, 56sylbb 219 . . . . . . . . 9 (({0, 1} ∩ 𝑍) ≠ ∅ → (0 ∈ 𝑍 ∨ 1 ∈ 𝑍))
58 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 0 ∈ 𝑍)
5958snssd 4834 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → {0} ⊆ 𝑍)
60 dfss2 3994 . . . . . . . . . . . . . . . . . . 19 ({0} ⊆ 𝑍 ↔ ({0} ∩ 𝑍) = {0})
6159, 60sylib 218 . . . . . . . . . . . . . . . . . 18 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({0} ∩ 𝑍) = {0})
6261iuneq1d 5042 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) = 𝑥 ∈ {0}dom (𝑅𝑟𝑥))
63 c0ex 11284 . . . . . . . . . . . . . . . . . 18 0 ∈ V
64 oveq2 7456 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑅𝑟𝑥) = (𝑅𝑟0))
6564dmeqd 5930 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → dom (𝑅𝑟𝑥) = dom (𝑅𝑟0))
6663, 65iunxsn 5114 . . . . . . . . . . . . . . . . 17 𝑥 ∈ {0}dom (𝑅𝑟𝑥) = dom (𝑅𝑟0)
6762, 66eqtrdi 2796 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) = dom (𝑅𝑟0))
68 relexp0g 15071 . . . . . . . . . . . . . . . . . . 19 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6968ad2antll 728 . . . . . . . . . . . . . . . . . 18 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
7069dmeqd 5930 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → dom (𝑅𝑟0) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
71 dmresi 6081 . . . . . . . . . . . . . . . . 17 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
7270, 71eqtrdi 2796 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → dom (𝑅𝑟0) = (dom 𝑅 ∪ ran 𝑅))
7367, 72eqtrd 2780 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) = (dom 𝑅 ∪ ran 𝑅))
7461iuneq1d 5042 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) = 𝑥 ∈ {0}ran (𝑅𝑟𝑥))
7564rneqd 5963 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → ran (𝑅𝑟𝑥) = ran (𝑅𝑟0))
7663, 75iunxsn 5114 . . . . . . . . . . . . . . . . 17 𝑥 ∈ {0}ran (𝑅𝑟𝑥) = ran (𝑅𝑟0)
7774, 76eqtrdi 2796 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) = ran (𝑅𝑟0))
7869rneqd 5963 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ran (𝑅𝑟0) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
79 rnresi 6104 . . . . . . . . . . . . . . . . 17 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
8078, 79eqtrdi 2796 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ran (𝑅𝑟0) = (dom 𝑅 ∪ ran 𝑅))
8177, 80eqtrd 2780 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) = (dom 𝑅 ∪ ran 𝑅))
8273, 81uneq12d 4192 . . . . . . . . . . . . . 14 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) = ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅)))
83 unidm 4180 . . . . . . . . . . . . . 14 ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
8482, 83eqtrdi 2796 . . . . . . . . . . . . 13 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅))
8584uneq1d 4190 . . . . . . . . . . . 12 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))))
86 relexpdmg 15091 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ0𝑅𝑉) → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
8786expcom 413 . . . . . . . . . . . . . . . . . 18 (𝑅𝑉 → (𝑥 ∈ ℕ0 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
8887ralrimiv 3151 . . . . . . . . . . . . . . . . 17 (𝑅𝑉 → ∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
8988ad2antll 728 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
90 olc 867 . . . . . . . . . . . . . . . . . . . . 21 (𝑍 ⊆ ℕ0 → ({1} ⊆ ℕ0𝑍 ⊆ ℕ0))
9190ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({1} ⊆ ℕ0𝑍 ⊆ ℕ0))
92 inss 4268 . . . . . . . . . . . . . . . . . . . 20 (({1} ⊆ ℕ0𝑍 ⊆ ℕ0) → ({1} ∩ 𝑍) ⊆ ℕ0)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({1} ∩ 𝑍) ⊆ ℕ0)
9493sseld 4007 . . . . . . . . . . . . . . . . . 18 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (𝑥 ∈ ({1} ∩ 𝑍) → 𝑥 ∈ ℕ0))
9594imim1d 82 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((𝑥 ∈ ℕ0 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({1} ∩ 𝑍) → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
9695ralimdv2 3169 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
9789, 96mpd 15 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
98 iunss 5068 . . . . . . . . . . . . . . 15 ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
9997, 98sylibr 234 . . . . . . . . . . . . . 14 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
100 relexprng 15095 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ0𝑅𝑉) → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
101100expcom 413 . . . . . . . . . . . . . . . . . 18 (𝑅𝑉 → (𝑥 ∈ ℕ0 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
102101ralrimiv 3151 . . . . . . . . . . . . . . . . 17 (𝑅𝑉 → ∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
103102ad2antll 728 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
10494imim1d 82 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((𝑥 ∈ ℕ0 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({1} ∩ 𝑍) → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
105104ralimdv2 3169 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
106103, 105mpd 15 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
107 iunss 5068 . . . . . . . . . . . . . . 15 ( 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
108106, 107sylibr 234 . . . . . . . . . . . . . 14 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
10999, 108unssd 4215 . . . . . . . . . . . . 13 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅))
110 ssequn2 4212 . . . . . . . . . . . . 13 (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
111109, 110sylib 218 . . . . . . . . . . . 12 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
11285, 111eqtrd 2780 . . . . . . . . . . 11 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
113112ex 412 . . . . . . . . . 10 (0 ∈ 𝑍 → ((𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)))
114 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 1 ∈ 𝑍)
115114snssd 4834 . . . . . . . . . . . . . . . . . 18 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → {1} ⊆ 𝑍)
116 dfss2 3994 . . . . . . . . . . . . . . . . . 18 ({1} ⊆ 𝑍 ↔ ({1} ∩ 𝑍) = {1})
117115, 116sylib 218 . . . . . . . . . . . . . . . . 17 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({1} ∩ 𝑍) = {1})
118117iuneq1d 5042 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) = 𝑥 ∈ {1}dom (𝑅𝑟𝑥))
119 1ex 11286 . . . . . . . . . . . . . . . . 17 1 ∈ V
120 oveq2 7456 . . . . . . . . . . . . . . . . . 18 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
121120dmeqd 5930 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → dom (𝑅𝑟𝑥) = dom (𝑅𝑟1))
122119, 121iunxsn 5114 . . . . . . . . . . . . . . . 16 𝑥 ∈ {1}dom (𝑅𝑟𝑥) = dom (𝑅𝑟1)
123118, 122eqtrdi 2796 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) = dom (𝑅𝑟1))
124 relexp1g 15075 . . . . . . . . . . . . . . . . 17 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
125124ad2antll 728 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (𝑅𝑟1) = 𝑅)
126125dmeqd 5930 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → dom (𝑅𝑟1) = dom 𝑅)
127123, 126eqtrd 2780 . . . . . . . . . . . . . 14 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) = dom 𝑅)
128117iuneq1d 5042 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) = 𝑥 ∈ {1}ran (𝑅𝑟𝑥))
129120rneqd 5963 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → ran (𝑅𝑟𝑥) = ran (𝑅𝑟1))
130119, 129iunxsn 5114 . . . . . . . . . . . . . . . 16 𝑥 ∈ {1}ran (𝑅𝑟𝑥) = ran (𝑅𝑟1)
131128, 130eqtrdi 2796 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) = ran (𝑅𝑟1))
132125rneqd 5963 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ran (𝑅𝑟1) = ran 𝑅)
133131, 132eqtrd 2780 . . . . . . . . . . . . . 14 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) = ran 𝑅)
134127, 133uneq12d 4192 . . . . . . . . . . . . 13 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅))
135134uneq2d 4191 . . . . . . . . . . . 12 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ (dom 𝑅 ∪ ran 𝑅)))
13688ad2antll 728 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
137 olc 867 . . . . . . . . . . . . . . . . . . . . 21 (𝑍 ⊆ ℕ0 → ({0} ⊆ ℕ0𝑍 ⊆ ℕ0))
138137ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({0} ⊆ ℕ0𝑍 ⊆ ℕ0))
139 inss 4268 . . . . . . . . . . . . . . . . . . . 20 (({0} ⊆ ℕ0𝑍 ⊆ ℕ0) → ({0} ∩ 𝑍) ⊆ ℕ0)
140138, 139syl 17 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({0} ∩ 𝑍) ⊆ ℕ0)
141140sseld 4007 . . . . . . . . . . . . . . . . . 18 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (𝑥 ∈ ({0} ∩ 𝑍) → 𝑥 ∈ ℕ0))
142141imim1d 82 . . . . . . . . . . . . . . . . 17 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((𝑥 ∈ ℕ0 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({0} ∩ 𝑍) → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
143142ralimdv2 3169 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
144136, 143mpd 15 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
145 iunss 5068 . . . . . . . . . . . . . . 15 ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
146144, 145sylibr 234 . . . . . . . . . . . . . 14 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
147102ad2antll 728 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
148141imim1d 82 . . . . . . . . . . . . . . . . 17 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((𝑥 ∈ ℕ0 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({0} ∩ 𝑍) → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
149148ralimdv2 3169 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
150147, 149mpd 15 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
151 iunss 5068 . . . . . . . . . . . . . . 15 ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
152150, 151sylibr 234 . . . . . . . . . . . . . 14 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
153146, 152unssd 4215 . . . . . . . . . . . . 13 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅))
154 ssequn1 4209 . . . . . . . . . . . . 13 (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅))
155153, 154sylib 218 . . . . . . . . . . . 12 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅))
156135, 155eqtrd 2780 . . . . . . . . . . 11 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
157156ex 412 . . . . . . . . . 10 (1 ∈ 𝑍 → ((𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)))
158113, 157jaoi 856 . . . . . . . . 9 ((0 ∈ 𝑍 ∨ 1 ∈ 𝑍) → ((𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)))
15957, 158syl 17 . . . . . . . 8 (({0, 1} ∩ 𝑍) ≠ ∅ → ((𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)))
1601593impib 1116 . . . . . . 7 ((({0, 1} ∩ 𝑍) ≠ ∅ ∧ 𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
1611603com13 1124 . . . . . 6 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
162161uneq1d 4190 . . . . 5 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ((( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))))
16388adantr 480 . . . . . . . . . 10 ((𝑅𝑉𝑍 ⊆ ℕ0) → ∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
164 ssel 4002 . . . . . . . . . . . . 13 (𝑍 ⊆ ℕ0 → (𝑥𝑍𝑥 ∈ ℕ0))
165164adantl 481 . . . . . . . . . . . 12 ((𝑅𝑉𝑍 ⊆ ℕ0) → (𝑥𝑍𝑥 ∈ ℕ0))
166165imim1d 82 . . . . . . . . . . 11 ((𝑅𝑉𝑍 ⊆ ℕ0) → ((𝑥 ∈ ℕ0 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥𝑍 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
167166ralimdv2 3169 . . . . . . . . . 10 ((𝑅𝑉𝑍 ⊆ ℕ0) → (∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
168163, 167mpd 15 . . . . . . . . 9 ((𝑅𝑉𝑍 ⊆ ℕ0) → ∀𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
169 iunss 5068 . . . . . . . . 9 ( 𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
170168, 169sylibr 234 . . . . . . . 8 ((𝑅𝑉𝑍 ⊆ ℕ0) → 𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
171102adantr 480 . . . . . . . . . 10 ((𝑅𝑉𝑍 ⊆ ℕ0) → ∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
172165imim1d 82 . . . . . . . . . . 11 ((𝑅𝑉𝑍 ⊆ ℕ0) → ((𝑥 ∈ ℕ0 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥𝑍 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
173172ralimdv2 3169 . . . . . . . . . 10 ((𝑅𝑉𝑍 ⊆ ℕ0) → (∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
174171, 173mpd 15 . . . . . . . . 9 ((𝑅𝑉𝑍 ⊆ ℕ0) → ∀𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
175 iunss 5068 . . . . . . . . 9 ( 𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
176174, 175sylibr 234 . . . . . . . 8 ((𝑅𝑉𝑍 ⊆ ℕ0) → 𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
177170, 176unssd 4215 . . . . . . 7 ((𝑅𝑉𝑍 ⊆ ℕ0) → ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅))
1781773adant3 1132 . . . . . 6 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅))
179 ssequn2 4212 . . . . . 6 (( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
180178, 179sylib 218 . . . . 5 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
181162, 180eqtrd 2780 . . . 4 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ((( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
18235, 181eqtrid 2792 . . 3 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → (dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅))
183 nn0ex 12559 . . . . . . 7 0 ∈ V
184183ssex 5339 . . . . . 6 (𝑍 ⊆ ℕ0𝑍 ∈ V)
185 inex2g 5338 . . . . . . . . 9 (𝑍 ∈ V → ({0} ∩ 𝑍) ∈ V)
186 inex2g 5338 . . . . . . . . 9 (𝑍 ∈ V → ({1} ∩ 𝑍) ∈ V)
187185, 186unexd 7789 . . . . . . . 8 (𝑍 ∈ V → (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∈ V)
188 unexg 7778 . . . . . . . 8 (((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∈ V ∧ 𝑍 ∈ V) → ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) ∈ V)
189187, 188mpancom 687 . . . . . . 7 (𝑍 ∈ V → ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) ∈ V)
190 ovex 7481 . . . . . . . 8 (𝑅𝑟𝑥) ∈ V
191190rgenw 3071 . . . . . . 7 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V
192 iunexg 8004 . . . . . . 7 ((((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) ∈ V ∧ ∀𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V) → 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V)
193189, 191, 192sylancl 585 . . . . . 6 (𝑍 ∈ V → 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V)
194184, 193syl 17 . . . . 5 (𝑍 ⊆ ℕ0 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V)
1951943ad2ant2 1134 . . . 4 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V)
196 simp1 1136 . . . 4 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → 𝑅𝑉)
197 relexp0eq 43663 . . . 4 (( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V ∧ 𝑅𝑉) → ((dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅) ↔ ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0)))
198195, 196, 197syl2anc 583 . . 3 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ((dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅) ↔ ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0)))
199182, 198mpbid 232 . 2 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0))
20012, 199eqtrid 2792 1 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ( 𝑥𝑍 (𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  {cpr 4650   ciun 5015   I cid 5592  dom cdm 5700  ran crn 5701  cres 5702  (class class class)co 7448  0cc0 11184  1c1 11185  0cn0 12553  𝑟crelexp 15068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-relexp 15069
This theorem is referenced by:  corclrcl  43669  corcltrcl  43701
  Copyright terms: Public domain W3C validator