Proof of Theorem iunrelexp0
Step | Hyp | Ref
| Expression |
1 | | df-pr 4561 |
. . . . . . 7
⊢ {0, 1} =
({0} ∪ {1}) |
2 | 1 | ineq1i 4139 |
. . . . . 6
⊢ ({0, 1}
∩ 𝑍) = (({0} ∪ {1})
∩ 𝑍) |
3 | | indir 4206 |
. . . . . 6
⊢ (({0}
∪ {1}) ∩ 𝑍) = (({0}
∩ 𝑍) ∪ ({1} ∩
𝑍)) |
4 | 2, 3 | eqtr2i 2767 |
. . . . 5
⊢ (({0}
∩ 𝑍) ∪ ({1} ∩
𝑍)) = ({0, 1} ∩ 𝑍) |
5 | 4 | uneq1i 4089 |
. . . 4
⊢ ((({0}
∩ 𝑍) ∪ ({1} ∩
𝑍)) ∪ 𝑍) = (({0, 1} ∩ 𝑍) ∪ 𝑍) |
6 | | inss2 4160 |
. . . . 5
⊢ ({0, 1}
∩ 𝑍) ⊆ 𝑍 |
7 | | ssequn1 4110 |
. . . . 5
⊢ (({0, 1}
∩ 𝑍) ⊆ 𝑍 ↔ (({0, 1} ∩ 𝑍) ∪ 𝑍) = 𝑍) |
8 | 6, 7 | mpbi 229 |
. . . 4
⊢ (({0, 1}
∩ 𝑍) ∪ 𝑍) = 𝑍 |
9 | 5, 8 | eqtr2i 2767 |
. . 3
⊢ 𝑍 = ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) |
10 | | iuneq1 4937 |
. . . 4
⊢ (𝑍 = ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) → ∪
𝑥 ∈ 𝑍 (𝑅↑𝑟𝑥) = ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)) |
11 | 10 | oveq1d 7270 |
. . 3
⊢ (𝑍 = ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) → (∪ 𝑥 ∈ 𝑍 (𝑅↑𝑟𝑥)↑𝑟0) = (∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)↑𝑟0)) |
12 | 9, 11 | ax-mp 5 |
. 2
⊢ (∪ 𝑥 ∈ 𝑍 (𝑅↑𝑟𝑥)↑𝑟0) = (∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)↑𝑟0) |
13 | | dmiun 5811 |
. . . . . . 7
⊢ dom
∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) = ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)dom (𝑅↑𝑟𝑥) |
14 | | iunxun 5019 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)dom (𝑅↑𝑟𝑥) = (∪
𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥)) |
15 | | iunxun 5019 |
. . . . . . . . . 10
⊢ ∪ 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅↑𝑟𝑥) = (∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) |
16 | 15 | equncomi 4085 |
. . . . . . . . 9
⊢ ∪ 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅↑𝑟𝑥) = (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) |
17 | 16 | uneq1i 4089 |
. . . . . . . 8
⊢ (∪ 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥)) = ((∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥)) |
18 | 17 | equncomi 4085 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥)) = (∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥))) |
19 | 13, 14, 18 | 3eqtri 2770 |
. . . . . 6
⊢ dom
∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) = (∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥))) |
20 | | rniun 6040 |
. . . . . . 7
⊢ ran
∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) = ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)ran (𝑅↑𝑟𝑥) |
21 | | iunxun 5019 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)ran (𝑅↑𝑟𝑥) = (∪
𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥)) |
22 | | iunxun 5019 |
. . . . . . . 8
⊢ ∪ 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))ran (𝑅↑𝑟𝑥) = (∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) |
23 | 22 | uneq1i 4089 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥)) = ((∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥)) |
24 | 20, 21, 23 | 3eqtri 2770 |
. . . . . 6
⊢ ran
∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) = ((∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥)) |
25 | 19, 24 | uneq12i 4091 |
. . . . 5
⊢ (dom
∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∪ ran ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)) = ((∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥))) ∪ ((∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) |
26 | | uncom 4083 |
. . . . . . 7
⊢ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥))) = ((∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥)) |
27 | 26 | uneq1i 4089 |
. . . . . 6
⊢
((∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥))) ∪ ((∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) = (((∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥)) ∪ ((∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) |
28 | | un4 4099 |
. . . . . 6
⊢
(((∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥)) ∪ ((∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) = (((∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) ∪ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) |
29 | 27, 28 | eqtri 2766 |
. . . . 5
⊢
((∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥))) ∪ ((∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) = (((∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) ∪ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) |
30 | | uncom 4083 |
. . . . . . . 8
⊢ (∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) = (∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) |
31 | 30 | uneq1i 4089 |
. . . . . . 7
⊢
((∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = ((∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) |
32 | | un4 4099 |
. . . . . . 7
⊢
((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = ((∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) |
33 | 31, 32 | eqtri 2766 |
. . . . . 6
⊢
((∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = ((∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) |
34 | 33 | uneq1i 4089 |
. . . . 5
⊢
(((∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) ∪ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) = (((∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) ∪ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) |
35 | 25, 29, 34 | 3eqtri 2770 |
. . . 4
⊢ (dom
∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∪ ran ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)) = (((∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) ∪ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) |
36 | | df-ne 2943 |
. . . . . . . . . 10
⊢ (({0, 1}
∩ 𝑍) ≠ ∅
↔ ¬ ({0, 1} ∩ 𝑍) = ∅) |
37 | | incom 4131 |
. . . . . . . . . . . . . . 15
⊢ ({0, 1}
∩ 𝑍) = (𝑍 ∩ {0, 1}) |
38 | 1 | ineq2i 4140 |
. . . . . . . . . . . . . . 15
⊢ (𝑍 ∩ {0, 1}) = (𝑍 ∩ ({0} ∪
{1})) |
39 | | indi 4204 |
. . . . . . . . . . . . . . 15
⊢ (𝑍 ∩ ({0} ∪ {1})) =
((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1})) |
40 | 37, 38, 39 | 3eqtri 2770 |
. . . . . . . . . . . . . 14
⊢ ({0, 1}
∩ 𝑍) = ((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1})) |
41 | 40 | eqeq1i 2743 |
. . . . . . . . . . . . 13
⊢ (({0, 1}
∩ 𝑍) = ∅ ↔
((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1})) =
∅) |
42 | | un00 4373 |
. . . . . . . . . . . . 13
⊢ (((𝑍 ∩ {0}) = ∅ ∧
(𝑍 ∩ {1}) = ∅)
↔ ((𝑍 ∩ {0}) ∪
(𝑍 ∩ {1})) =
∅) |
43 | | anor 979 |
. . . . . . . . . . . . 13
⊢ (((𝑍 ∩ {0}) = ∅ ∧
(𝑍 ∩ {1}) = ∅)
↔ ¬ (¬ (𝑍
∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅)) |
44 | 41, 42, 43 | 3bitr2i 298 |
. . . . . . . . . . . 12
⊢ (({0, 1}
∩ 𝑍) = ∅ ↔
¬ (¬ (𝑍 ∩ {0})
= ∅ ∨ ¬ (𝑍
∩ {1}) = ∅)) |
45 | 44 | notbii 319 |
. . . . . . . . . . 11
⊢ (¬
({0, 1} ∩ 𝑍) = ∅
↔ ¬ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) =
∅)) |
46 | | notnotb 314 |
. . . . . . . . . . 11
⊢ ((¬
(𝑍 ∩ {0}) = ∅
∨ ¬ (𝑍 ∩ {1}) =
∅) ↔ ¬ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) =
∅)) |
47 | | disjsn 4644 |
. . . . . . . . . . . . . 14
⊢ ((𝑍 ∩ {0}) = ∅ ↔
¬ 0 ∈ 𝑍) |
48 | 47 | notbii 319 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑍 ∩ {0}) = ∅
↔ ¬ ¬ 0 ∈ 𝑍) |
49 | | notnotb 314 |
. . . . . . . . . . . . 13
⊢ (0 ∈
𝑍 ↔ ¬ ¬ 0
∈ 𝑍) |
50 | 48, 49 | bitr4i 277 |
. . . . . . . . . . . 12
⊢ (¬
(𝑍 ∩ {0}) = ∅
↔ 0 ∈ 𝑍) |
51 | | disjsn 4644 |
. . . . . . . . . . . . . 14
⊢ ((𝑍 ∩ {1}) = ∅ ↔
¬ 1 ∈ 𝑍) |
52 | 51 | notbii 319 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑍 ∩ {1}) = ∅
↔ ¬ ¬ 1 ∈ 𝑍) |
53 | | notnotb 314 |
. . . . . . . . . . . . 13
⊢ (1 ∈
𝑍 ↔ ¬ ¬ 1
∈ 𝑍) |
54 | 52, 53 | bitr4i 277 |
. . . . . . . . . . . 12
⊢ (¬
(𝑍 ∩ {1}) = ∅
↔ 1 ∈ 𝑍) |
55 | 50, 54 | orbi12i 911 |
. . . . . . . . . . 11
⊢ ((¬
(𝑍 ∩ {0}) = ∅
∨ ¬ (𝑍 ∩ {1}) =
∅) ↔ (0 ∈ 𝑍
∨ 1 ∈ 𝑍)) |
56 | 45, 46, 55 | 3bitr2i 298 |
. . . . . . . . . 10
⊢ (¬
({0, 1} ∩ 𝑍) = ∅
↔ (0 ∈ 𝑍 ∨ 1
∈ 𝑍)) |
57 | 36, 56 | sylbb 218 |
. . . . . . . . 9
⊢ (({0, 1}
∩ 𝑍) ≠ ∅
→ (0 ∈ 𝑍 ∨ 1
∈ 𝑍)) |
58 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → 0 ∈ 𝑍) |
59 | 58 | snssd 4739 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → {0} ⊆ 𝑍) |
60 | | df-ss 3900 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({0}
⊆ 𝑍 ↔ ({0} ∩
𝑍) = {0}) |
61 | 59, 60 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ({0} ∩ 𝑍) = {0}) |
62 | 61 | iuneq1d 4948 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) = ∪ 𝑥 ∈ {0}dom (𝑅↑𝑟𝑥)) |
63 | | c0ex 10900 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
V |
64 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 0 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟0)) |
65 | 64 | dmeqd 5803 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → dom (𝑅↑𝑟𝑥) = dom (𝑅↑𝑟0)) |
66 | 63, 65 | iunxsn 5016 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑥 ∈ {0}dom (𝑅↑𝑟𝑥) = dom (𝑅↑𝑟0) |
67 | 62, 66 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) = dom (𝑅↑𝑟0)) |
68 | | relexp0g 14661 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
69 | 68 | ad2antll 725 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
70 | 69 | dmeqd 5803 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → dom (𝑅↑𝑟0) = dom ( I
↾ (dom 𝑅 ∪ ran
𝑅))) |
71 | | dmresi 5950 |
. . . . . . . . . . . . . . . . 17
⊢ dom ( I
↾ (dom 𝑅 ∪ ran
𝑅)) = (dom 𝑅 ∪ ran 𝑅) |
72 | 70, 71 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → dom (𝑅↑𝑟0) = (dom 𝑅 ∪ ran 𝑅)) |
73 | 67, 72 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) = (dom 𝑅 ∪ ran 𝑅)) |
74 | 61 | iuneq1d 4948 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) = ∪ 𝑥 ∈ {0}ran (𝑅↑𝑟𝑥)) |
75 | 64 | rneqd 5836 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → ran (𝑅↑𝑟𝑥) = ran (𝑅↑𝑟0)) |
76 | 63, 75 | iunxsn 5016 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑥 ∈ {0}ran (𝑅↑𝑟𝑥) = ran (𝑅↑𝑟0) |
77 | 74, 76 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) = ran (𝑅↑𝑟0)) |
78 | 69 | rneqd 5836 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ran (𝑅↑𝑟0) = ran ( I
↾ (dom 𝑅 ∪ ran
𝑅))) |
79 | | rnresi 5972 |
. . . . . . . . . . . . . . . . 17
⊢ ran ( I
↾ (dom 𝑅 ∪ ran
𝑅)) = (dom 𝑅 ∪ ran 𝑅) |
80 | 78, 79 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ran (𝑅↑𝑟0) = (dom 𝑅 ∪ ran 𝑅)) |
81 | 77, 80 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) = (dom 𝑅 ∪ ran 𝑅)) |
82 | 73, 81 | uneq12d 4094 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) = ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅))) |
83 | | unidm 4082 |
. . . . . . . . . . . . . 14
⊢ ((dom
𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) |
84 | 82, 83 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅)) |
85 | 84 | uneq1d 4092 |
. . . . . . . . . . . 12
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = ((dom 𝑅 ∪ ran 𝑅) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)))) |
86 | | relexpdmg 14681 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
87 | 86 | expcom 413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ ℕ0 → dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
88 | 87 | ralrimiv 3106 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ ℕ0 dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
89 | 88 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∀𝑥 ∈ ℕ0 dom
(𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
90 | | olc 864 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑍 ⊆ ℕ0
→ ({1} ⊆ ℕ0 ∨ 𝑍 ⊆
ℕ0)) |
91 | 90 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ({1} ⊆
ℕ0 ∨ 𝑍
⊆ ℕ0)) |
92 | | inss 4169 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({1}
⊆ ℕ0 ∨ 𝑍 ⊆ ℕ0) → ({1}
∩ 𝑍) ⊆
ℕ0) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ({1} ∩ 𝑍) ⊆
ℕ0) |
94 | 93 | sseld 3916 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (𝑥 ∈ ({1} ∩ 𝑍) → 𝑥 ∈
ℕ0)) |
95 | 94 | imim1d 82 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((𝑥 ∈ ℕ0 → dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({1} ∩ 𝑍) → dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))) |
96 | 95 | ralimdv2 3101 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (∀𝑥 ∈ ℕ0 dom
(𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
97 | 89, 96 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∀𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
98 | | iunss 4971 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
99 | 97, 98 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
100 | | relexprng 14685 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℕ0
∧ 𝑅 ∈ 𝑉) → ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
101 | 100 | expcom 413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ ℕ0 → ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
102 | 101 | ralrimiv 3106 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ ℕ0 ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
103 | 102 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∀𝑥 ∈ ℕ0 ran
(𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
104 | 94 | imim1d 82 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((𝑥 ∈ ℕ0 → ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({1} ∩ 𝑍) → ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))) |
105 | 104 | ralimdv2 3101 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (∀𝑥 ∈ ℕ0 ran
(𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
106 | 103, 105 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∀𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
107 | | iunss 4971 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
108 | 106, 107 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
109 | 99, 108 | unssd 4116 |
. . . . . . . . . . . . 13
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
110 | | ssequn2 4113 |
. . . . . . . . . . . . 13
⊢
((∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ((dom 𝑅 ∪ ran 𝑅) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)) |
111 | 109, 110 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((dom 𝑅 ∪ ran 𝑅) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)) |
112 | 85, 111 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((0
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)) |
113 | 112 | ex 412 |
. . . . . . . . . 10
⊢ (0 ∈
𝑍 → ((𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))) |
114 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → 1 ∈ 𝑍) |
115 | 114 | snssd 4739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → {1} ⊆ 𝑍) |
116 | | df-ss 3900 |
. . . . . . . . . . . . . . . . . 18
⊢ ({1}
⊆ 𝑍 ↔ ({1} ∩
𝑍) = {1}) |
117 | 115, 116 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ({1} ∩ 𝑍) = {1}) |
118 | 117 | iuneq1d 4948 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) = ∪ 𝑥 ∈ {1}dom (𝑅↑𝑟𝑥)) |
119 | | 1ex 10902 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
V |
120 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 1 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟1)) |
121 | 120 | dmeqd 5803 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 1 → dom (𝑅↑𝑟𝑥) = dom (𝑅↑𝑟1)) |
122 | 119, 121 | iunxsn 5016 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑥 ∈ {1}dom (𝑅↑𝑟𝑥) = dom (𝑅↑𝑟1) |
123 | 118, 122 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) = dom (𝑅↑𝑟1)) |
124 | | relexp1g 14665 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
125 | 124 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (𝑅↑𝑟1) = 𝑅) |
126 | 125 | dmeqd 5803 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → dom (𝑅↑𝑟1) = dom 𝑅) |
127 | 123, 126 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) = dom 𝑅) |
128 | 117 | iuneq1d 4948 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥) = ∪ 𝑥 ∈ {1}ran (𝑅↑𝑟𝑥)) |
129 | 120 | rneqd 5836 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 1 → ran (𝑅↑𝑟𝑥) = ran (𝑅↑𝑟1)) |
130 | 119, 129 | iunxsn 5016 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑥 ∈ {1}ran (𝑅↑𝑟𝑥) = ran (𝑅↑𝑟1) |
131 | 128, 130 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥) = ran (𝑅↑𝑟1)) |
132 | 125 | rneqd 5836 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ran (𝑅↑𝑟1) = ran 𝑅) |
133 | 131, 132 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥) = ran 𝑅) |
134 | 127, 133 | uneq12d 4094 |
. . . . . . . . . . . . 13
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅)) |
135 | 134 | uneq2d 4093 |
. . . . . . . . . . . 12
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = ((∪
𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (dom 𝑅 ∪ ran 𝑅))) |
136 | 88 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∀𝑥 ∈ ℕ0 dom
(𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
137 | | olc 864 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑍 ⊆ ℕ0
→ ({0} ⊆ ℕ0 ∨ 𝑍 ⊆
ℕ0)) |
138 | 137 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ({0} ⊆
ℕ0 ∨ 𝑍
⊆ ℕ0)) |
139 | | inss 4169 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({0}
⊆ ℕ0 ∨ 𝑍 ⊆ ℕ0) → ({0}
∩ 𝑍) ⊆
ℕ0) |
140 | 138, 139 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ({0} ∩ 𝑍) ⊆
ℕ0) |
141 | 140 | sseld 3916 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (𝑥 ∈ ({0} ∩ 𝑍) → 𝑥 ∈
ℕ0)) |
142 | 141 | imim1d 82 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((𝑥 ∈ ℕ0 → dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({0} ∩ 𝑍) → dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))) |
143 | 142 | ralimdv2 3101 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (∀𝑥 ∈ ℕ0 dom
(𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
144 | 136, 143 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∀𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
145 | | iunss 4971 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
146 | 144, 145 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
147 | 102 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∀𝑥 ∈ ℕ0 ran
(𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
148 | 141 | imim1d 82 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((𝑥 ∈ ℕ0 → ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({0} ∩ 𝑍) → ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))) |
149 | 148 | ralimdv2 3101 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (∀𝑥 ∈ ℕ0 ran
(𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
150 | 147, 149 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∀𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
151 | | iunss 4971 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
152 | 150, 151 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
153 | 146, 152 | unssd 4116 |
. . . . . . . . . . . . 13
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → (∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
154 | | ssequn1 4110 |
. . . . . . . . . . . . 13
⊢
((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)) |
155 | 153, 154 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)) |
156 | 135, 155 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((1
∈ 𝑍 ∧ (𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉)) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)) |
157 | 156 | ex 412 |
. . . . . . . . . 10
⊢ (1 ∈
𝑍 → ((𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))) |
158 | 113, 157 | jaoi 853 |
. . . . . . . . 9
⊢ ((0
∈ 𝑍 ∨ 1 ∈
𝑍) → ((𝑍 ⊆ ℕ0
∧ 𝑅 ∈ 𝑉) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))) |
159 | 57, 158 | syl 17 |
. . . . . . . 8
⊢ (({0, 1}
∩ 𝑍) ≠ ∅
→ ((𝑍 ⊆
ℕ0 ∧ 𝑅
∈ 𝑉) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))) |
160 | 159 | 3impib 1114 |
. . . . . . 7
⊢ ((({0, 1}
∩ 𝑍) ≠ ∅ ∧
𝑍 ⊆
ℕ0 ∧ 𝑅
∈ 𝑉) → ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)) |
161 | 160 | 3com13 1122 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ ((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)) |
162 | 161 | uneq1d 4092 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ (((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) ∪ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) = ((dom 𝑅 ∪ ran 𝑅) ∪ (∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥)))) |
163 | 88 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) →
∀𝑥 ∈
ℕ0 dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
164 | | ssel 3910 |
. . . . . . . . . . . . 13
⊢ (𝑍 ⊆ ℕ0
→ (𝑥 ∈ 𝑍 → 𝑥 ∈
ℕ0)) |
165 | 164 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) → (𝑥 ∈ 𝑍 → 𝑥 ∈
ℕ0)) |
166 | 165 | imim1d 82 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) → ((𝑥 ∈ ℕ0
→ dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ 𝑍 → dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))) |
167 | 166 | ralimdv2 3101 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) →
(∀𝑥 ∈
ℕ0 dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
168 | 163, 167 | mpd 15 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) →
∀𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
169 | | iunss 4971 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
170 | 168, 169 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) →
∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
171 | 102 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) →
∀𝑥 ∈
ℕ0 ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
172 | 165 | imim1d 82 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) → ((𝑥 ∈ ℕ0
→ ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ 𝑍 → ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))) |
173 | 172 | ralimdv2 3101 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) →
(∀𝑥 ∈
ℕ0 ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))) |
174 | 171, 173 | mpd 15 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) →
∀𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
175 | | iunss 4971 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
176 | 174, 175 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) →
∪ 𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
177 | 170, 176 | unssd 4116 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0) →
(∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
178 | 177 | 3adant3 1130 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
179 | | ssequn2 4113 |
. . . . . 6
⊢
((∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ((dom 𝑅 ∪ ran 𝑅) ∪ (∪
𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)) |
180 | 178, 179 | sylib 217 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ ((dom 𝑅 ∪ ran
𝑅) ∪ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)) |
181 | 162, 180 | eqtrd 2778 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ (((∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅↑𝑟𝑥)) ∪ (∪
𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅↑𝑟𝑥))) ∪ (∪ 𝑥 ∈ 𝑍 dom (𝑅↑𝑟𝑥) ∪ ∪
𝑥 ∈ 𝑍 ran (𝑅↑𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)) |
182 | 35, 181 | syl5eq 2791 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ (dom ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∪ ran ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅)) |
183 | | nn0ex 12169 |
. . . . . . 7
⊢
ℕ0 ∈ V |
184 | 183 | ssex 5240 |
. . . . . 6
⊢ (𝑍 ⊆ ℕ0
→ 𝑍 ∈
V) |
185 | | incom 4131 |
. . . . . . . . . 10
⊢ (𝑍 ∩ {0}) = ({0} ∩ 𝑍) |
186 | | inex1g 5238 |
. . . . . . . . . 10
⊢ (𝑍 ∈ V → (𝑍 ∩ {0}) ∈
V) |
187 | 185, 186 | eqeltrrid 2844 |
. . . . . . . . 9
⊢ (𝑍 ∈ V → ({0} ∩
𝑍) ∈
V) |
188 | | incom 4131 |
. . . . . . . . . 10
⊢ (𝑍 ∩ {1}) = ({1} ∩ 𝑍) |
189 | | inex1g 5238 |
. . . . . . . . . 10
⊢ (𝑍 ∈ V → (𝑍 ∩ {1}) ∈
V) |
190 | 188, 189 | eqeltrrid 2844 |
. . . . . . . . 9
⊢ (𝑍 ∈ V → ({1} ∩
𝑍) ∈
V) |
191 | | unexg 7577 |
. . . . . . . . 9
⊢ ((({0}
∩ 𝑍) ∈ V ∧
({1} ∩ 𝑍) ∈ V)
→ (({0} ∩ 𝑍) ∪
({1} ∩ 𝑍)) ∈
V) |
192 | 187, 190,
191 | syl2anc 583 |
. . . . . . . 8
⊢ (𝑍 ∈ V → (({0} ∩
𝑍) ∪ ({1} ∩ 𝑍)) ∈ V) |
193 | | unexg 7577 |
. . . . . . . 8
⊢ (((({0}
∩ 𝑍) ∪ ({1} ∩
𝑍)) ∈ V ∧ 𝑍 ∈ V) → ((({0} ∩
𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) ∈ V) |
194 | 192, 193 | mpancom 684 |
. . . . . . 7
⊢ (𝑍 ∈ V → ((({0} ∩
𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) ∈ V) |
195 | | ovex 7288 |
. . . . . . . 8
⊢ (𝑅↑𝑟𝑥) ∈ V |
196 | 195 | rgenw 3075 |
. . . . . . 7
⊢
∀𝑥 ∈
((({0} ∩ 𝑍) ∪ ({1}
∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∈ V |
197 | | iunexg 7779 |
. . . . . . 7
⊢ ((((({0}
∩ 𝑍) ∪ ({1} ∩
𝑍)) ∪ 𝑍) ∈ V ∧ ∀𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∈ V) → ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∈ V) |
198 | 194, 196,
197 | sylancl 585 |
. . . . . 6
⊢ (𝑍 ∈ V → ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∈ V) |
199 | 184, 198 | syl 17 |
. . . . 5
⊢ (𝑍 ⊆ ℕ0
→ ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∈ V) |
200 | 199 | 3ad2ant2 1132 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∈ V) |
201 | | simp1 1134 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ 𝑅 ∈ 𝑉) |
202 | | relexp0eq 41198 |
. . . 4
⊢
((∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∈ V ∧ 𝑅 ∈ 𝑉) → ((dom ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∪ ran ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅) ↔ (∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)↑𝑟0) = (𝑅↑𝑟0))) |
203 | 200, 201,
202 | syl2anc 583 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ ((dom ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥) ∪ ran ∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅) ↔ (∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)↑𝑟0) = (𝑅↑𝑟0))) |
204 | 182, 203 | mpbid 231 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ (∪ 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅↑𝑟𝑥)↑𝑟0) = (𝑅↑𝑟0)) |
205 | 12, 204 | syl5eq 2791 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1}
∩ 𝑍) ≠ ∅)
→ (∪ 𝑥 ∈ 𝑍 (𝑅↑𝑟𝑥)↑𝑟0) = (𝑅↑𝑟0)) |