Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflim5 Structured version   Visualization version   GIF version

Theorem dflim5 43305
Description: A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
dflim5 (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dflim5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limord 6372 . . . . 5 (Lim 𝐴 → Ord 𝐴)
2 ordeleqon 7722 . . . . . . 7 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
32biimpi 216 . . . . . 6 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
43orcomd 871 . . . . 5 (Ord 𝐴 → (𝐴 = On ∨ 𝐴 ∈ On))
51, 4syl 17 . . . 4 (Lim 𝐴 → (𝐴 = On ∨ 𝐴 ∈ On))
65pm4.71ri 560 . . 3 (Lim 𝐴 ↔ ((𝐴 = On ∨ 𝐴 ∈ On) ∧ Lim 𝐴))
7 andir 1010 . . 3 (((𝐴 = On ∨ 𝐴 ∈ On) ∧ Lim 𝐴) ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
86, 7bitri 275 . 2 (Lim 𝐴 ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
9 limon 7775 . . . . 5 Lim On
10 limeq 6323 . . . . 5 (𝐴 = On → (Lim 𝐴 ↔ Lim On))
119, 10mpbiri 258 . . . 4 (𝐴 = On → Lim 𝐴)
1211pm4.71i 559 . . 3 (𝐴 = On ↔ (𝐴 = On ∧ Lim 𝐴))
1312orbi1i 913 . 2 ((𝐴 = On ∨ (𝐴 ∈ On ∧ Lim 𝐴)) ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
14 simpl 482 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → 𝐴 ∈ On)
15 omelon 9561 . . . . . . . 8 ω ∈ On
1615a1i 11 . . . . . . 7 (𝐴 ∈ On → ω ∈ On)
17 id 22 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ On)
18 peano1 7829 . . . . . . . . 9 ∅ ∈ ω
1918ne0ii 4297 . . . . . . . 8 ω ≠ ∅
2019a1i 11 . . . . . . 7 (𝐴 ∈ On → ω ≠ ∅)
2116, 17, 203jca 1128 . . . . . 6 (𝐴 ∈ On → (ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅))
22 omeulem1 8507 . . . . . 6 ((ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅) → ∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴)
2314, 21, 223syl 18 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → ∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴)
24 limeq 6323 . . . . . . . . . . . . . . . 16 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝐴))
2524biimprd 248 . . . . . . . . . . . . . . 15 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (Lim 𝐴 → Lim ((ω ·o 𝑥) +o 𝑦)))
26 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → 𝑦 ∈ ω)
27 nnlim 7820 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ω → ¬ Lim 𝑦)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → ¬ Lim 𝑦)
29 on0eln0 6368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
3029biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
3130necon1bd 2943 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → (¬ ∅ ∈ 𝑥𝑥 = ∅))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ ∅ ∈ 𝑥𝑥 = ∅))
3332imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 = ∅)
3433, 26jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 = ∅ ∧ 𝑦 ∈ ω))
35 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → 𝑥 = ∅)
3635oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) = (ω ·o ∅))
37 om0 8442 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ω ∈ On → (ω ·o ∅) = ∅)
3815, 37mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o ∅) = ∅)
3936, 38eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) = ∅)
4039oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → ((ω ·o 𝑥) +o 𝑦) = (∅ +o 𝑦))
41 nna0r 8534 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ω → (∅ +o 𝑦) = 𝑦)
4241adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (∅ +o 𝑦) = 𝑦)
4340, 42eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → ((ω ·o 𝑥) +o 𝑦) = 𝑦)
44 limeq 6323 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) = 𝑦 → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝑦))
4534, 43, 443syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝑦))
4628, 45mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → ¬ Lim ((ω ·o 𝑥) +o 𝑦))
4746ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ ∅ ∈ 𝑥 → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
48 ovex 7386 . . . . . . . . . . . . . . . . . . . . 21 ((ω ·o 𝑥) +o 𝑦) ∈ V
49 nlimsucg 7782 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) ∈ V → ¬ Lim suc ((ω ·o 𝑥) +o 𝑦))
5048, 49mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ¬ Lim suc ((ω ·o 𝑥) +o 𝑦))
51 nnord 7814 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ω → Ord 𝑦)
52 orduniorsuc 7769 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ω → (𝑦 = 𝑦𝑦 = suc 𝑦))
54 3ianor 1106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (¬ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦) ↔ (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
55 df-lim 6316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 ↔ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦))
5654, 55xchnxbir 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ Lim 𝑦 ↔ (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
5727, 56sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ω → (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
5851pm2.24d 151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ Ord 𝑦 → (𝑦 = 𝑦𝑦 = ∅)))
59 nne 2929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑦 ≠ ∅ ↔ 𝑦 = ∅)
6059biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 ≠ ∅ → 𝑦 = ∅)
6160a1i13 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ 𝑦 ≠ ∅ → (𝑦 = 𝑦𝑦 = ∅)))
62 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 = 𝑦 → (𝑦 = 𝑦𝑦 = ∅))
6362a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ 𝑦 = 𝑦 → (𝑦 = 𝑦𝑦 = ∅)))
6458, 61, 633jaod 1431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ω → ((¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦) → (𝑦 = 𝑦𝑦 = ∅)))
6557, 64mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ω → (𝑦 = 𝑦𝑦 = ∅))
6665orim1d 967 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ω → ((𝑦 = 𝑦𝑦 = suc 𝑦) → (𝑦 = ∅ ∨ 𝑦 = suc 𝑦)))
6753, 66mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ω → (𝑦 = ∅ ∨ 𝑦 = suc 𝑦))
6867ord 864 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → (¬ 𝑦 = ∅ → 𝑦 = suc 𝑦))
6968adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ 𝑦 = ∅ → 𝑦 = suc 𝑦))
7069imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 = suc 𝑦)
7170oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o suc 𝑦))
72 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → 𝑥 ∈ On)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑥 ∈ On)
74 omcl 8461 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ·o 𝑥) ∈ On)
7515, 73, 74sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → (ω ·o 𝑥) ∈ On)
76 nnon 7812 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ω → 𝑦 ∈ On)
77 onuni 7728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ On → 𝑦 ∈ On)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ On)
7978adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → 𝑦 ∈ On)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ On)
81 oasuc 8449 . . . . . . . . . . . . . . . . . . . . . . 23 (((ω ·o 𝑥) ∈ On ∧ 𝑦 ∈ On) → ((ω ·o 𝑥) +o suc 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
8275, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o suc 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
8371, 82eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
84 limeq 6323 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) = suc ((ω ·o 𝑥) +o 𝑦) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim suc ((ω ·o 𝑥) +o 𝑦)))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim suc ((ω ·o 𝑥) +o 𝑦)))
8650, 85mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ¬ Lim ((ω ·o 𝑥) +o 𝑦))
8786ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ 𝑦 = ∅ → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
8847, 87jaod 859 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → ((¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅) → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
8988con2d 134 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim ((ω ·o 𝑥) +o 𝑦) → ¬ (¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅)))
90 anor 984 . . . . . . . . . . . . . . . 16 ((∅ ∈ 𝑥𝑦 = ∅) ↔ ¬ (¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅))
9189, 90imbitrrdi 252 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim ((ω ·o 𝑥) +o 𝑦) → (∅ ∈ 𝑥𝑦 = ∅)))
9225, 91syl9 77 . . . . . . . . . . . . . 14 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
9392com13 88 . . . . . . . . . . . . 13 (Lim 𝐴 → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
9493adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
95943imp 1110 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (∅ ∈ 𝑥𝑦 = ∅))
96 simp2 1137 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ On ∧ 𝑦 ∈ ω))
9796, 72syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → 𝑥 ∈ On)
98 simpl 482 . . . . . . . . . . . . . 14 ((∅ ∈ 𝑥𝑦 = ∅) → ∅ ∈ 𝑥)
9997, 98anim12i 613 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → (𝑥 ∈ On ∧ ∅ ∈ 𝑥))
100 ondif1 8426 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1o) ↔ (𝑥 ∈ On ∧ ∅ ∈ 𝑥))
10199, 100sylibr 234 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → 𝑥 ∈ (On ∖ 1o))
102 simpr 484 . . . . . . . . . . . . . . 15 ((∅ ∈ 𝑥𝑦 = ∅) → 𝑦 = ∅)
103102oveq2d 7369 . . . . . . . . . . . . . 14 ((∅ ∈ 𝑥𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o ∅))
104103adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o ∅))
105 simpl3 1194 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o 𝑦) = 𝐴)
10615, 72, 74sylancr 587 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) ∈ On)
107 oa0 8441 . . . . . . . . . . . . . . 15 ((ω ·o 𝑥) ∈ On → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
10896, 106, 1073syl 18 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
109108adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
110104, 105, 1093eqtr3d 2772 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → 𝐴 = (ω ·o 𝑥))
111101, 110jca 511 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))
11295, 111mpdan 687 . . . . . . . . . 10 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))
1131123exp 1119 . . . . . . . . 9 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))))
114113expdimp 452 . . . . . . . 8 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ 𝑥 ∈ On) → (𝑦 ∈ ω → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))))
115114rexlimdv 3128 . . . . . . 7 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ 𝑥 ∈ On) → (∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥))))
116115expimpd 453 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥))))
117116reximdv2 3139 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → (∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴 → ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
11823, 117mpd 15 . . . 4 ((𝐴 ∈ On ∧ Lim 𝐴) → ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))
119 simpr 484 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → 𝐴 = (ω ·o 𝑥))
120 eldifi 4084 . . . . . . . . 9 (𝑥 ∈ (On ∖ 1o) → 𝑥 ∈ On)
12115, 120, 74sylancr 587 . . . . . . . 8 (𝑥 ∈ (On ∖ 1o) → (ω ·o 𝑥) ∈ On)
122121adantr 480 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (ω ·o 𝑥) ∈ On)
123119, 122eqeltrd 2828 . . . . . 6 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → 𝐴 ∈ On)
124 limom 7822 . . . . . . . . . . 11 Lim ω
12515, 124pm3.2i 470 . . . . . . . . . 10 (ω ∈ On ∧ Lim ω)
126 omlimcl2 43218 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝑥) → Lim (ω ·o 𝑥))
127125, 126mpanl2 701 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∅ ∈ 𝑥) → Lim (ω ·o 𝑥))
128100, 127sylbi 217 . . . . . . . 8 (𝑥 ∈ (On ∖ 1o) → Lim (ω ·o 𝑥))
129128adantr 480 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → Lim (ω ·o 𝑥))
130 limeq 6323 . . . . . . . 8 (𝐴 = (ω ·o 𝑥) → (Lim 𝐴 ↔ Lim (ω ·o 𝑥)))
131130adantl 481 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (Lim 𝐴 ↔ Lim (ω ·o 𝑥)))
132129, 131mpbird 257 . . . . . 6 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → Lim 𝐴)
133123, 132jca 511 . . . . 5 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (𝐴 ∈ On ∧ Lim 𝐴))
134133rexlimiva 3122 . . . 4 (∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥) → (𝐴 ∈ On ∧ Lim 𝐴))
135118, 134impbii 209 . . 3 ((𝐴 ∈ On ∧ Lim 𝐴) ↔ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))
136135orbi2i 912 . 2 ((𝐴 = On ∨ (𝐴 ∈ On ∧ Lim 𝐴)) ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
1378, 13, 1363bitr2i 299 1 (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3438  cdif 3902  c0 4286   cuni 4861  Ord word 6310  Oncon0 6311  Lim wlim 6312  suc csuc 6313  (class class class)co 7353  ωcom 7806  1oc1o 8388   +o coa 8392   ·o comu 8393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator