Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflim5 Structured version   Visualization version   GIF version

Theorem dflim5 43486
Description: A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
dflim5 (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dflim5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limord 6375 . . . . 5 (Lim 𝐴 → Ord 𝐴)
2 ordeleqon 7724 . . . . . . 7 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
32biimpi 216 . . . . . 6 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
43orcomd 871 . . . . 5 (Ord 𝐴 → (𝐴 = On ∨ 𝐴 ∈ On))
51, 4syl 17 . . . 4 (Lim 𝐴 → (𝐴 = On ∨ 𝐴 ∈ On))
65pm4.71ri 560 . . 3 (Lim 𝐴 ↔ ((𝐴 = On ∨ 𝐴 ∈ On) ∧ Lim 𝐴))
7 andir 1010 . . 3 (((𝐴 = On ∨ 𝐴 ∈ On) ∧ Lim 𝐴) ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
86, 7bitri 275 . 2 (Lim 𝐴 ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
9 limon 7775 . . . . 5 Lim On
10 limeq 6326 . . . . 5 (𝐴 = On → (Lim 𝐴 ↔ Lim On))
119, 10mpbiri 258 . . . 4 (𝐴 = On → Lim 𝐴)
1211pm4.71i 559 . . 3 (𝐴 = On ↔ (𝐴 = On ∧ Lim 𝐴))
1312orbi1i 913 . 2 ((𝐴 = On ∨ (𝐴 ∈ On ∧ Lim 𝐴)) ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
14 simpl 482 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → 𝐴 ∈ On)
15 omelon 9547 . . . . . . . 8 ω ∈ On
1615a1i 11 . . . . . . 7 (𝐴 ∈ On → ω ∈ On)
17 id 22 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ On)
18 peano1 7828 . . . . . . . . 9 ∅ ∈ ω
1918ne0ii 4293 . . . . . . . 8 ω ≠ ∅
2019a1i 11 . . . . . . 7 (𝐴 ∈ On → ω ≠ ∅)
2116, 17, 203jca 1128 . . . . . 6 (𝐴 ∈ On → (ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅))
22 omeulem1 8506 . . . . . 6 ((ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅) → ∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴)
2314, 21, 223syl 18 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → ∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴)
24 limeq 6326 . . . . . . . . . . . . . . . 16 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝐴))
2524biimprd 248 . . . . . . . . . . . . . . 15 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (Lim 𝐴 → Lim ((ω ·o 𝑥) +o 𝑦)))
26 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → 𝑦 ∈ ω)
27 nnlim 7819 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ω → ¬ Lim 𝑦)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → ¬ Lim 𝑦)
29 on0eln0 6371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
3029biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
3130necon1bd 2947 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → (¬ ∅ ∈ 𝑥𝑥 = ∅))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ ∅ ∈ 𝑥𝑥 = ∅))
3332imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 = ∅)
3433, 26jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 = ∅ ∧ 𝑦 ∈ ω))
35 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → 𝑥 = ∅)
3635oveq2d 7371 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) = (ω ·o ∅))
37 om0 8441 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ω ∈ On → (ω ·o ∅) = ∅)
3815, 37mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o ∅) = ∅)
3936, 38eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) = ∅)
4039oveq1d 7370 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → ((ω ·o 𝑥) +o 𝑦) = (∅ +o 𝑦))
41 nna0r 8533 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ω → (∅ +o 𝑦) = 𝑦)
4241adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (∅ +o 𝑦) = 𝑦)
4340, 42eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → ((ω ·o 𝑥) +o 𝑦) = 𝑦)
44 limeq 6326 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) = 𝑦 → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝑦))
4534, 43, 443syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝑦))
4628, 45mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → ¬ Lim ((ω ·o 𝑥) +o 𝑦))
4746ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ ∅ ∈ 𝑥 → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
48 ovex 7388 . . . . . . . . . . . . . . . . . . . . 21 ((ω ·o 𝑥) +o 𝑦) ∈ V
49 nlimsucg 7781 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) ∈ V → ¬ Lim suc ((ω ·o 𝑥) +o 𝑦))
5048, 49mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ¬ Lim suc ((ω ·o 𝑥) +o 𝑦))
51 nnord 7813 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ω → Ord 𝑦)
52 orduniorsuc 7769 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ω → (𝑦 = 𝑦𝑦 = suc 𝑦))
54 3ianor 1106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (¬ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦) ↔ (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
55 df-lim 6319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 ↔ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦))
5654, 55xchnxbir 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ Lim 𝑦 ↔ (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
5727, 56sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ω → (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
5851pm2.24d 151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ Ord 𝑦 → (𝑦 = 𝑦𝑦 = ∅)))
59 nne 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑦 ≠ ∅ ↔ 𝑦 = ∅)
6059biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 ≠ ∅ → 𝑦 = ∅)
6160a1i13 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ 𝑦 ≠ ∅ → (𝑦 = 𝑦𝑦 = ∅)))
62 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 = 𝑦 → (𝑦 = 𝑦𝑦 = ∅))
6362a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ 𝑦 = 𝑦 → (𝑦 = 𝑦𝑦 = ∅)))
6458, 61, 633jaod 1431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ω → ((¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦) → (𝑦 = 𝑦𝑦 = ∅)))
6557, 64mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ω → (𝑦 = 𝑦𝑦 = ∅))
6665orim1d 967 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ω → ((𝑦 = 𝑦𝑦 = suc 𝑦) → (𝑦 = ∅ ∨ 𝑦 = suc 𝑦)))
6753, 66mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ω → (𝑦 = ∅ ∨ 𝑦 = suc 𝑦))
6867ord 864 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → (¬ 𝑦 = ∅ → 𝑦 = suc 𝑦))
6968adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ 𝑦 = ∅ → 𝑦 = suc 𝑦))
7069imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 = suc 𝑦)
7170oveq2d 7371 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o suc 𝑦))
72 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → 𝑥 ∈ On)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑥 ∈ On)
74 omcl 8460 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ·o 𝑥) ∈ On)
7515, 73, 74sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → (ω ·o 𝑥) ∈ On)
76 nnon 7811 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ω → 𝑦 ∈ On)
77 onuni 7730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ On → 𝑦 ∈ On)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ On)
7978adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → 𝑦 ∈ On)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ On)
81 oasuc 8448 . . . . . . . . . . . . . . . . . . . . . . 23 (((ω ·o 𝑥) ∈ On ∧ 𝑦 ∈ On) → ((ω ·o 𝑥) +o suc 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
8275, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o suc 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
8371, 82eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
84 limeq 6326 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) = suc ((ω ·o 𝑥) +o 𝑦) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim suc ((ω ·o 𝑥) +o 𝑦)))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim suc ((ω ·o 𝑥) +o 𝑦)))
8650, 85mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ¬ Lim ((ω ·o 𝑥) +o 𝑦))
8786ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ 𝑦 = ∅ → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
8847, 87jaod 859 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → ((¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅) → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
8988con2d 134 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim ((ω ·o 𝑥) +o 𝑦) → ¬ (¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅)))
90 anor 984 . . . . . . . . . . . . . . . 16 ((∅ ∈ 𝑥𝑦 = ∅) ↔ ¬ (¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅))
9189, 90imbitrrdi 252 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim ((ω ·o 𝑥) +o 𝑦) → (∅ ∈ 𝑥𝑦 = ∅)))
9225, 91syl9 77 . . . . . . . . . . . . . 14 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
9392com13 88 . . . . . . . . . . . . 13 (Lim 𝐴 → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
9493adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
95943imp 1110 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (∅ ∈ 𝑥𝑦 = ∅))
96 simp2 1137 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ On ∧ 𝑦 ∈ ω))
9796, 72syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → 𝑥 ∈ On)
98 simpl 482 . . . . . . . . . . . . . 14 ((∅ ∈ 𝑥𝑦 = ∅) → ∅ ∈ 𝑥)
9997, 98anim12i 613 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → (𝑥 ∈ On ∧ ∅ ∈ 𝑥))
100 ondif1 8425 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1o) ↔ (𝑥 ∈ On ∧ ∅ ∈ 𝑥))
10199, 100sylibr 234 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → 𝑥 ∈ (On ∖ 1o))
102 simpr 484 . . . . . . . . . . . . . . 15 ((∅ ∈ 𝑥𝑦 = ∅) → 𝑦 = ∅)
103102oveq2d 7371 . . . . . . . . . . . . . 14 ((∅ ∈ 𝑥𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o ∅))
104103adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o ∅))
105 simpl3 1194 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o 𝑦) = 𝐴)
10615, 72, 74sylancr 587 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) ∈ On)
107 oa0 8440 . . . . . . . . . . . . . . 15 ((ω ·o 𝑥) ∈ On → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
10896, 106, 1073syl 18 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
109108adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
110104, 105, 1093eqtr3d 2776 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → 𝐴 = (ω ·o 𝑥))
111101, 110jca 511 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))
11295, 111mpdan 687 . . . . . . . . . 10 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))
1131123exp 1119 . . . . . . . . 9 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))))
114113expdimp 452 . . . . . . . 8 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ 𝑥 ∈ On) → (𝑦 ∈ ω → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))))
115114rexlimdv 3132 . . . . . . 7 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ 𝑥 ∈ On) → (∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥))))
116115expimpd 453 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥))))
117116reximdv2 3143 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → (∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴 → ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
11823, 117mpd 15 . . . 4 ((𝐴 ∈ On ∧ Lim 𝐴) → ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))
119 simpr 484 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → 𝐴 = (ω ·o 𝑥))
120 eldifi 4080 . . . . . . . . 9 (𝑥 ∈ (On ∖ 1o) → 𝑥 ∈ On)
12115, 120, 74sylancr 587 . . . . . . . 8 (𝑥 ∈ (On ∖ 1o) → (ω ·o 𝑥) ∈ On)
122121adantr 480 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (ω ·o 𝑥) ∈ On)
123119, 122eqeltrd 2833 . . . . . 6 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → 𝐴 ∈ On)
124 limom 7821 . . . . . . . . . . 11 Lim ω
12515, 124pm3.2i 470 . . . . . . . . . 10 (ω ∈ On ∧ Lim ω)
126 omlimcl2 43399 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝑥) → Lim (ω ·o 𝑥))
127125, 126mpanl2 701 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∅ ∈ 𝑥) → Lim (ω ·o 𝑥))
128100, 127sylbi 217 . . . . . . . 8 (𝑥 ∈ (On ∖ 1o) → Lim (ω ·o 𝑥))
129128adantr 480 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → Lim (ω ·o 𝑥))
130 limeq 6326 . . . . . . . 8 (𝐴 = (ω ·o 𝑥) → (Lim 𝐴 ↔ Lim (ω ·o 𝑥)))
131130adantl 481 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (Lim 𝐴 ↔ Lim (ω ·o 𝑥)))
132129, 131mpbird 257 . . . . . 6 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → Lim 𝐴)
133123, 132jca 511 . . . . 5 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (𝐴 ∈ On ∧ Lim 𝐴))
134133rexlimiva 3126 . . . 4 (∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥) → (𝐴 ∈ On ∧ Lim 𝐴))
135118, 134impbii 209 . . 3 ((𝐴 ∈ On ∧ Lim 𝐴) ↔ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))
136135orbi2i 912 . 2 ((𝐴 = On ∨ (𝐴 ∈ On ∧ Lim 𝐴)) ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
1378, 13, 1363bitr2i 299 1 (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  cdif 3895  c0 4282   cuni 4860  Ord word 6313  Oncon0 6314  Lim wlim 6315  suc csuc 6316  (class class class)co 7355  ωcom 7805  1oc1o 8387   +o coa 8391   ·o comu 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-omul 8399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator