Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflim5 Structured version   Visualization version   GIF version

Theorem dflim5 43320
Description: A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
dflim5 (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dflim5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limord 6418 . . . . 5 (Lim 𝐴 → Ord 𝐴)
2 ordeleqon 7781 . . . . . . 7 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
32biimpi 216 . . . . . 6 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
43orcomd 871 . . . . 5 (Ord 𝐴 → (𝐴 = On ∨ 𝐴 ∈ On))
51, 4syl 17 . . . 4 (Lim 𝐴 → (𝐴 = On ∨ 𝐴 ∈ On))
65pm4.71ri 560 . . 3 (Lim 𝐴 ↔ ((𝐴 = On ∨ 𝐴 ∈ On) ∧ Lim 𝐴))
7 andir 1010 . . 3 (((𝐴 = On ∨ 𝐴 ∈ On) ∧ Lim 𝐴) ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
86, 7bitri 275 . 2 (Lim 𝐴 ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
9 limon 7835 . . . . 5 Lim On
10 limeq 6369 . . . . 5 (𝐴 = On → (Lim 𝐴 ↔ Lim On))
119, 10mpbiri 258 . . . 4 (𝐴 = On → Lim 𝐴)
1211pm4.71i 559 . . 3 (𝐴 = On ↔ (𝐴 = On ∧ Lim 𝐴))
1312orbi1i 913 . 2 ((𝐴 = On ∨ (𝐴 ∈ On ∧ Lim 𝐴)) ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
14 simpl 482 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → 𝐴 ∈ On)
15 omelon 9665 . . . . . . . 8 ω ∈ On
1615a1i 11 . . . . . . 7 (𝐴 ∈ On → ω ∈ On)
17 id 22 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ On)
18 peano1 7889 . . . . . . . . 9 ∅ ∈ ω
1918ne0ii 4324 . . . . . . . 8 ω ≠ ∅
2019a1i 11 . . . . . . 7 (𝐴 ∈ On → ω ≠ ∅)
2116, 17, 203jca 1128 . . . . . 6 (𝐴 ∈ On → (ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅))
22 omeulem1 8599 . . . . . 6 ((ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅) → ∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴)
2314, 21, 223syl 18 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → ∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴)
24 limeq 6369 . . . . . . . . . . . . . . . 16 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝐴))
2524biimprd 248 . . . . . . . . . . . . . . 15 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (Lim 𝐴 → Lim ((ω ·o 𝑥) +o 𝑦)))
26 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → 𝑦 ∈ ω)
27 nnlim 7880 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ω → ¬ Lim 𝑦)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → ¬ Lim 𝑦)
29 on0eln0 6414 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
3029biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
3130necon1bd 2951 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → (¬ ∅ ∈ 𝑥𝑥 = ∅))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ ∅ ∈ 𝑥𝑥 = ∅))
3332imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 = ∅)
3433, 26jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 = ∅ ∧ 𝑦 ∈ ω))
35 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → 𝑥 = ∅)
3635oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) = (ω ·o ∅))
37 om0 8534 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ω ∈ On → (ω ·o ∅) = ∅)
3815, 37mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o ∅) = ∅)
3936, 38eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) = ∅)
4039oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → ((ω ·o 𝑥) +o 𝑦) = (∅ +o 𝑦))
41 nna0r 8626 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ω → (∅ +o 𝑦) = 𝑦)
4241adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (∅ +o 𝑦) = 𝑦)
4340, 42eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → ((ω ·o 𝑥) +o 𝑦) = 𝑦)
44 limeq 6369 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) = 𝑦 → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝑦))
4534, 43, 443syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝑦))
4628, 45mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → ¬ Lim ((ω ·o 𝑥) +o 𝑦))
4746ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ ∅ ∈ 𝑥 → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
48 ovex 7443 . . . . . . . . . . . . . . . . . . . . 21 ((ω ·o 𝑥) +o 𝑦) ∈ V
49 nlimsucg 7842 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) ∈ V → ¬ Lim suc ((ω ·o 𝑥) +o 𝑦))
5048, 49mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ¬ Lim suc ((ω ·o 𝑥) +o 𝑦))
51 nnord 7874 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ω → Ord 𝑦)
52 orduniorsuc 7829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ω → (𝑦 = 𝑦𝑦 = suc 𝑦))
54 3ianor 1106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (¬ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦) ↔ (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
55 df-lim 6362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 ↔ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦))
5654, 55xchnxbir 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ Lim 𝑦 ↔ (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
5727, 56sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ω → (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
5851pm2.24d 151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ Ord 𝑦 → (𝑦 = 𝑦𝑦 = ∅)))
59 nne 2937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑦 ≠ ∅ ↔ 𝑦 = ∅)
6059biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 ≠ ∅ → 𝑦 = ∅)
6160a1i13 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ 𝑦 ≠ ∅ → (𝑦 = 𝑦𝑦 = ∅)))
62 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 = 𝑦 → (𝑦 = 𝑦𝑦 = ∅))
6362a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ 𝑦 = 𝑦 → (𝑦 = 𝑦𝑦 = ∅)))
6458, 61, 633jaod 1431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ω → ((¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦) → (𝑦 = 𝑦𝑦 = ∅)))
6557, 64mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ω → (𝑦 = 𝑦𝑦 = ∅))
6665orim1d 967 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ω → ((𝑦 = 𝑦𝑦 = suc 𝑦) → (𝑦 = ∅ ∨ 𝑦 = suc 𝑦)))
6753, 66mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ω → (𝑦 = ∅ ∨ 𝑦 = suc 𝑦))
6867ord 864 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → (¬ 𝑦 = ∅ → 𝑦 = suc 𝑦))
6968adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ 𝑦 = ∅ → 𝑦 = suc 𝑦))
7069imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 = suc 𝑦)
7170oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o suc 𝑦))
72 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → 𝑥 ∈ On)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑥 ∈ On)
74 omcl 8553 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ·o 𝑥) ∈ On)
7515, 73, 74sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → (ω ·o 𝑥) ∈ On)
76 nnon 7872 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ω → 𝑦 ∈ On)
77 onuni 7787 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ On → 𝑦 ∈ On)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ On)
7978adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → 𝑦 ∈ On)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ On)
81 oasuc 8541 . . . . . . . . . . . . . . . . . . . . . . 23 (((ω ·o 𝑥) ∈ On ∧ 𝑦 ∈ On) → ((ω ·o 𝑥) +o suc 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
8275, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o suc 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
8371, 82eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
84 limeq 6369 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) = suc ((ω ·o 𝑥) +o 𝑦) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim suc ((ω ·o 𝑥) +o 𝑦)))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim suc ((ω ·o 𝑥) +o 𝑦)))
8650, 85mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ¬ Lim ((ω ·o 𝑥) +o 𝑦))
8786ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ 𝑦 = ∅ → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
8847, 87jaod 859 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → ((¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅) → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
8988con2d 134 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim ((ω ·o 𝑥) +o 𝑦) → ¬ (¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅)))
90 anor 984 . . . . . . . . . . . . . . . 16 ((∅ ∈ 𝑥𝑦 = ∅) ↔ ¬ (¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅))
9189, 90imbitrrdi 252 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim ((ω ·o 𝑥) +o 𝑦) → (∅ ∈ 𝑥𝑦 = ∅)))
9225, 91syl9 77 . . . . . . . . . . . . . 14 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
9392com13 88 . . . . . . . . . . . . 13 (Lim 𝐴 → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
9493adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
95943imp 1110 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (∅ ∈ 𝑥𝑦 = ∅))
96 simp2 1137 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ On ∧ 𝑦 ∈ ω))
9796, 72syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → 𝑥 ∈ On)
98 simpl 482 . . . . . . . . . . . . . 14 ((∅ ∈ 𝑥𝑦 = ∅) → ∅ ∈ 𝑥)
9997, 98anim12i 613 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → (𝑥 ∈ On ∧ ∅ ∈ 𝑥))
100 ondif1 8518 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1o) ↔ (𝑥 ∈ On ∧ ∅ ∈ 𝑥))
10199, 100sylibr 234 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → 𝑥 ∈ (On ∖ 1o))
102 simpr 484 . . . . . . . . . . . . . . 15 ((∅ ∈ 𝑥𝑦 = ∅) → 𝑦 = ∅)
103102oveq2d 7426 . . . . . . . . . . . . . 14 ((∅ ∈ 𝑥𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o ∅))
104103adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o ∅))
105 simpl3 1194 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o 𝑦) = 𝐴)
10615, 72, 74sylancr 587 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) ∈ On)
107 oa0 8533 . . . . . . . . . . . . . . 15 ((ω ·o 𝑥) ∈ On → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
10896, 106, 1073syl 18 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
109108adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
110104, 105, 1093eqtr3d 2779 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → 𝐴 = (ω ·o 𝑥))
111101, 110jca 511 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))
11295, 111mpdan 687 . . . . . . . . . 10 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))
1131123exp 1119 . . . . . . . . 9 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))))
114113expdimp 452 . . . . . . . 8 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ 𝑥 ∈ On) → (𝑦 ∈ ω → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))))
115114rexlimdv 3140 . . . . . . 7 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ 𝑥 ∈ On) → (∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥))))
116115expimpd 453 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥))))
117116reximdv2 3151 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → (∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴 → ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
11823, 117mpd 15 . . . 4 ((𝐴 ∈ On ∧ Lim 𝐴) → ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))
119 simpr 484 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → 𝐴 = (ω ·o 𝑥))
120 eldifi 4111 . . . . . . . . 9 (𝑥 ∈ (On ∖ 1o) → 𝑥 ∈ On)
12115, 120, 74sylancr 587 . . . . . . . 8 (𝑥 ∈ (On ∖ 1o) → (ω ·o 𝑥) ∈ On)
122121adantr 480 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (ω ·o 𝑥) ∈ On)
123119, 122eqeltrd 2835 . . . . . 6 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → 𝐴 ∈ On)
124 limom 7882 . . . . . . . . . . 11 Lim ω
12515, 124pm3.2i 470 . . . . . . . . . 10 (ω ∈ On ∧ Lim ω)
126 omlimcl2 43233 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝑥) → Lim (ω ·o 𝑥))
127125, 126mpanl2 701 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∅ ∈ 𝑥) → Lim (ω ·o 𝑥))
128100, 127sylbi 217 . . . . . . . 8 (𝑥 ∈ (On ∖ 1o) → Lim (ω ·o 𝑥))
129128adantr 480 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → Lim (ω ·o 𝑥))
130 limeq 6369 . . . . . . . 8 (𝐴 = (ω ·o 𝑥) → (Lim 𝐴 ↔ Lim (ω ·o 𝑥)))
131130adantl 481 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (Lim 𝐴 ↔ Lim (ω ·o 𝑥)))
132129, 131mpbird 257 . . . . . 6 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → Lim 𝐴)
133123, 132jca 511 . . . . 5 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (𝐴 ∈ On ∧ Lim 𝐴))
134133rexlimiva 3134 . . . 4 (∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥) → (𝐴 ∈ On ∧ Lim 𝐴))
135118, 134impbii 209 . . 3 ((𝐴 ∈ On ∧ Lim 𝐴) ↔ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))
136135orbi2i 912 . 2 ((𝐴 = On ∨ (𝐴 ∈ On ∧ Lim 𝐴)) ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
1378, 13, 1363bitr2i 299 1 (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  Vcvv 3464  cdif 3928  c0 4313   cuni 4888  Ord word 6356  Oncon0 6357  Lim wlim 6358  suc csuc 6359  (class class class)co 7410  ωcom 7866  1oc1o 8478   +o coa 8482   ·o comu 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator