Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflim5 Structured version   Visualization version   GIF version

Theorem dflim5 43318
Description: A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
dflim5 (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dflim5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limord 6393 . . . . 5 (Lim 𝐴 → Ord 𝐴)
2 ordeleqon 7758 . . . . . . 7 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
32biimpi 216 . . . . . 6 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
43orcomd 871 . . . . 5 (Ord 𝐴 → (𝐴 = On ∨ 𝐴 ∈ On))
51, 4syl 17 . . . 4 (Lim 𝐴 → (𝐴 = On ∨ 𝐴 ∈ On))
65pm4.71ri 560 . . 3 (Lim 𝐴 ↔ ((𝐴 = On ∨ 𝐴 ∈ On) ∧ Lim 𝐴))
7 andir 1010 . . 3 (((𝐴 = On ∨ 𝐴 ∈ On) ∧ Lim 𝐴) ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
86, 7bitri 275 . 2 (Lim 𝐴 ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
9 limon 7811 . . . . 5 Lim On
10 limeq 6344 . . . . 5 (𝐴 = On → (Lim 𝐴 ↔ Lim On))
119, 10mpbiri 258 . . . 4 (𝐴 = On → Lim 𝐴)
1211pm4.71i 559 . . 3 (𝐴 = On ↔ (𝐴 = On ∧ Lim 𝐴))
1312orbi1i 913 . 2 ((𝐴 = On ∨ (𝐴 ∈ On ∧ Lim 𝐴)) ↔ ((𝐴 = On ∧ Lim 𝐴) ∨ (𝐴 ∈ On ∧ Lim 𝐴)))
14 simpl 482 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → 𝐴 ∈ On)
15 omelon 9599 . . . . . . . 8 ω ∈ On
1615a1i 11 . . . . . . 7 (𝐴 ∈ On → ω ∈ On)
17 id 22 . . . . . . 7 (𝐴 ∈ On → 𝐴 ∈ On)
18 peano1 7865 . . . . . . . . 9 ∅ ∈ ω
1918ne0ii 4307 . . . . . . . 8 ω ≠ ∅
2019a1i 11 . . . . . . 7 (𝐴 ∈ On → ω ≠ ∅)
2116, 17, 203jca 1128 . . . . . 6 (𝐴 ∈ On → (ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅))
22 omeulem1 8546 . . . . . 6 ((ω ∈ On ∧ 𝐴 ∈ On ∧ ω ≠ ∅) → ∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴)
2314, 21, 223syl 18 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → ∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴)
24 limeq 6344 . . . . . . . . . . . . . . . 16 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝐴))
2524biimprd 248 . . . . . . . . . . . . . . 15 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (Lim 𝐴 → Lim ((ω ·o 𝑥) +o 𝑦)))
26 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → 𝑦 ∈ ω)
27 nnlim 7856 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ω → ¬ Lim 𝑦)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → ¬ Lim 𝑦)
29 on0eln0 6389 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (∅ ∈ 𝑥𝑥 ≠ ∅))
3029biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On → (𝑥 ≠ ∅ → ∅ ∈ 𝑥))
3130necon1bd 2943 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → (¬ ∅ ∈ 𝑥𝑥 = ∅))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ ∅ ∈ 𝑥𝑥 = ∅))
3332imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 = ∅)
3433, 26jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 = ∅ ∧ 𝑦 ∈ ω))
35 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → 𝑥 = ∅)
3635oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) = (ω ·o ∅))
37 om0 8481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ω ∈ On → (ω ·o ∅) = ∅)
3815, 37mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o ∅) = ∅)
3936, 38eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) = ∅)
4039oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → ((ω ·o 𝑥) +o 𝑦) = (∅ +o 𝑦))
41 nna0r 8573 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ω → (∅ +o 𝑦) = 𝑦)
4241adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → (∅ +o 𝑦) = 𝑦)
4340, 42eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = ∅ ∧ 𝑦 ∈ ω) → ((ω ·o 𝑥) +o 𝑦) = 𝑦)
44 limeq 6344 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) = 𝑦 → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝑦))
4534, 43, 443syl 18 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim 𝑦))
4628, 45mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ ∅ ∈ 𝑥) → ¬ Lim ((ω ·o 𝑥) +o 𝑦))
4746ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ ∅ ∈ 𝑥 → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
48 ovex 7420 . . . . . . . . . . . . . . . . . . . . 21 ((ω ·o 𝑥) +o 𝑦) ∈ V
49 nlimsucg 7818 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) ∈ V → ¬ Lim suc ((ω ·o 𝑥) +o 𝑦))
5048, 49mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ¬ Lim suc ((ω ·o 𝑥) +o 𝑦))
51 nnord 7850 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ω → Ord 𝑦)
52 orduniorsuc 7805 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
5351, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ω → (𝑦 = 𝑦𝑦 = suc 𝑦))
54 3ianor 1106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (¬ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦) ↔ (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
55 df-lim 6337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 ↔ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦))
5654, 55xchnxbir 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ Lim 𝑦 ↔ (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
5727, 56sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ω → (¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦))
5851pm2.24d 151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ Ord 𝑦 → (𝑦 = 𝑦𝑦 = ∅)))
59 nne 2929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑦 ≠ ∅ ↔ 𝑦 = ∅)
6059biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 ≠ ∅ → 𝑦 = ∅)
6160a1i13 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ 𝑦 ≠ ∅ → (𝑦 = 𝑦𝑦 = ∅)))
62 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑦 = 𝑦 → (𝑦 = 𝑦𝑦 = ∅))
6362a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ ω → (¬ 𝑦 = 𝑦 → (𝑦 = 𝑦𝑦 = ∅)))
6458, 61, 633jaod 1431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ω → ((¬ Ord 𝑦 ∨ ¬ 𝑦 ≠ ∅ ∨ ¬ 𝑦 = 𝑦) → (𝑦 = 𝑦𝑦 = ∅)))
6557, 64mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ω → (𝑦 = 𝑦𝑦 = ∅))
6665orim1d 967 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ω → ((𝑦 = 𝑦𝑦 = suc 𝑦) → (𝑦 = ∅ ∨ 𝑦 = suc 𝑦)))
6753, 66mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ω → (𝑦 = ∅ ∨ 𝑦 = suc 𝑦))
6867ord 864 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → (¬ 𝑦 = ∅ → 𝑦 = suc 𝑦))
6968adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ 𝑦 = ∅ → 𝑦 = suc 𝑦))
7069imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 = suc 𝑦)
7170oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o suc 𝑦))
72 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → 𝑥 ∈ On)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑥 ∈ On)
74 omcl 8500 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ·o 𝑥) ∈ On)
7515, 73, 74sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → (ω ·o 𝑥) ∈ On)
76 nnon 7848 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ω → 𝑦 ∈ On)
77 onuni 7764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ On → 𝑦 ∈ On)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ On)
7978adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → 𝑦 ∈ On)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ On)
81 oasuc 8488 . . . . . . . . . . . . . . . . . . . . . . 23 (((ω ·o 𝑥) ∈ On ∧ 𝑦 ∈ On) → ((ω ·o 𝑥) +o suc 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
8275, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o suc 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
8371, 82eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = suc ((ω ·o 𝑥) +o 𝑦))
84 limeq 6344 . . . . . . . . . . . . . . . . . . . . 21 (((ω ·o 𝑥) +o 𝑦) = suc ((ω ·o 𝑥) +o 𝑦) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim suc ((ω ·o 𝑥) +o 𝑦)))
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → (Lim ((ω ·o 𝑥) +o 𝑦) ↔ Lim suc ((ω ·o 𝑥) +o 𝑦)))
8650, 85mtbird 325 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ¬ 𝑦 = ∅) → ¬ Lim ((ω ·o 𝑥) +o 𝑦))
8786ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (¬ 𝑦 = ∅ → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
8847, 87jaod 859 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → ((¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅) → ¬ Lim ((ω ·o 𝑥) +o 𝑦)))
8988con2d 134 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim ((ω ·o 𝑥) +o 𝑦) → ¬ (¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅)))
90 anor 984 . . . . . . . . . . . . . . . 16 ((∅ ∈ 𝑥𝑦 = ∅) ↔ ¬ (¬ ∅ ∈ 𝑥 ∨ ¬ 𝑦 = ∅))
9189, 90imbitrrdi 252 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim ((ω ·o 𝑥) +o 𝑦) → (∅ ∈ 𝑥𝑦 = ∅)))
9225, 91syl9 77 . . . . . . . . . . . . . 14 (((ω ·o 𝑥) +o 𝑦) = 𝐴 → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (Lim 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
9392com13 88 . . . . . . . . . . . . 13 (Lim 𝐴 → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
9493adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (∅ ∈ 𝑥𝑦 = ∅))))
95943imp 1110 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (∅ ∈ 𝑥𝑦 = ∅))
96 simp2 1137 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ On ∧ 𝑦 ∈ ω))
9796, 72syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → 𝑥 ∈ On)
98 simpl 482 . . . . . . . . . . . . . 14 ((∅ ∈ 𝑥𝑦 = ∅) → ∅ ∈ 𝑥)
9997, 98anim12i 613 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → (𝑥 ∈ On ∧ ∅ ∈ 𝑥))
100 ondif1 8465 . . . . . . . . . . . . 13 (𝑥 ∈ (On ∖ 1o) ↔ (𝑥 ∈ On ∧ ∅ ∈ 𝑥))
10199, 100sylibr 234 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → 𝑥 ∈ (On ∖ 1o))
102 simpr 484 . . . . . . . . . . . . . . 15 ((∅ ∈ 𝑥𝑦 = ∅) → 𝑦 = ∅)
103102oveq2d 7403 . . . . . . . . . . . . . 14 ((∅ ∈ 𝑥𝑦 = ∅) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o ∅))
104103adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o 𝑦) = ((ω ·o 𝑥) +o ∅))
105 simpl3 1194 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o 𝑦) = 𝐴)
10615, 72, 74sylancr 587 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (ω ·o 𝑥) ∈ On)
107 oa0 8480 . . . . . . . . . . . . . . 15 ((ω ·o 𝑥) ∈ On → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
10896, 106, 1073syl 18 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
109108adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → ((ω ·o 𝑥) +o ∅) = (ω ·o 𝑥))
110104, 105, 1093eqtr3d 2772 . . . . . . . . . . . 12 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → 𝐴 = (ω ·o 𝑥))
111101, 110jca 511 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) ∧ (∅ ∈ 𝑥𝑦 = ∅)) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))
11295, 111mpdan 687 . . . . . . . . . 10 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ (𝑥 ∈ On ∧ 𝑦 ∈ ω) ∧ ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))
1131123exp 1119 . . . . . . . . 9 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ 𝑦 ∈ ω) → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))))
114113expdimp 452 . . . . . . . 8 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ 𝑥 ∈ On) → (𝑦 ∈ ω → (((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)))))
115114rexlimdv 3132 . . . . . . 7 (((𝐴 ∈ On ∧ Lim 𝐴) ∧ 𝑥 ∈ On) → (∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴 → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥))))
116115expimpd 453 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → ((𝑥 ∈ On ∧ ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴) → (𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥))))
117116reximdv2 3143 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → (∃𝑥 ∈ On ∃𝑦 ∈ ω ((ω ·o 𝑥) +o 𝑦) = 𝐴 → ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
11823, 117mpd 15 . . . 4 ((𝐴 ∈ On ∧ Lim 𝐴) → ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))
119 simpr 484 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → 𝐴 = (ω ·o 𝑥))
120 eldifi 4094 . . . . . . . . 9 (𝑥 ∈ (On ∖ 1o) → 𝑥 ∈ On)
12115, 120, 74sylancr 587 . . . . . . . 8 (𝑥 ∈ (On ∖ 1o) → (ω ·o 𝑥) ∈ On)
122121adantr 480 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (ω ·o 𝑥) ∈ On)
123119, 122eqeltrd 2828 . . . . . 6 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → 𝐴 ∈ On)
124 limom 7858 . . . . . . . . . . 11 Lim ω
12515, 124pm3.2i 470 . . . . . . . . . 10 (ω ∈ On ∧ Lim ω)
126 omlimcl2 43231 . . . . . . . . . 10 (((𝑥 ∈ On ∧ (ω ∈ On ∧ Lim ω)) ∧ ∅ ∈ 𝑥) → Lim (ω ·o 𝑥))
127125, 126mpanl2 701 . . . . . . . . 9 ((𝑥 ∈ On ∧ ∅ ∈ 𝑥) → Lim (ω ·o 𝑥))
128100, 127sylbi 217 . . . . . . . 8 (𝑥 ∈ (On ∖ 1o) → Lim (ω ·o 𝑥))
129128adantr 480 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → Lim (ω ·o 𝑥))
130 limeq 6344 . . . . . . . 8 (𝐴 = (ω ·o 𝑥) → (Lim 𝐴 ↔ Lim (ω ·o 𝑥)))
131130adantl 481 . . . . . . 7 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (Lim 𝐴 ↔ Lim (ω ·o 𝑥)))
132129, 131mpbird 257 . . . . . 6 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → Lim 𝐴)
133123, 132jca 511 . . . . 5 ((𝑥 ∈ (On ∖ 1o) ∧ 𝐴 = (ω ·o 𝑥)) → (𝐴 ∈ On ∧ Lim 𝐴))
134133rexlimiva 3126 . . . 4 (∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥) → (𝐴 ∈ On ∧ Lim 𝐴))
135118, 134impbii 209 . . 3 ((𝐴 ∈ On ∧ Lim 𝐴) ↔ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))
136135orbi2i 912 . 2 ((𝐴 = On ∨ (𝐴 ∈ On ∧ Lim 𝐴)) ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
1378, 13, 1363bitr2i 299 1 (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3447  cdif 3911  c0 4296   cuni 4871  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334  (class class class)co 7387  ωcom 7842  1oc1o 8427   +o coa 8431   ·o comu 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator